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Abstract 
A necessary prerequisite for object oriented image processing is successful image 
segmentation. The approach presented in this paper aims for an universal high-quality 
solution applicable and adaptable to many problems and data types. As each image analysis 
problem deals with structures of a certain spatial scale, the average image objects size must 
be free adaptable to the scale of interest. 
This is achieved by a general segmentation algorithm based on homogeneity definitions in 
combination with local and global optimization techniques. A scale parameter is used to 
control the average image object size. Different homogeneity criteria for image objects based 
on spectral and/or spatial information are developed and compared.  

1 Motivation 

Image analysis implies to deal with image semantics. In most cases important semantic 
information to understand an image is not represented in single pixels but in meaningful 
image objects and their mutual relations. Furthermore many types of image data are more or 
less textured. Airborne data, radar or VHR-satellite data are playing an increasing role in 
remote sensing. In most cases, analysis of such textured data can only be successful when 
they are segmented in meaningful ‘homogenous’ areas. As a coarse rule of thumb the scale 
of such image objects must be significantly larger than the scale of image noise respectively 
texture. 
One application of object oriented image analysis is multi source data fusion. Integration of 
different data types plays an important role in the field of remote sensing and GIS 
integration. Given a set of georeferenced data of different and arbitrary origin the definite 
topology of image objects allows to bring these different types of data in a concrete local 
relation. For instance image objects can be extracted based on one data type. In subsequent 
analysis steps the image objects are able to take into account the attributes in other data 
layers. Also the classified image objects are a useful link on which remote sensing and GIS 
integration can be build on. 
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2 A Short Review on Image Segmentation 

Procedures for image segmentation are a main research focus in the area of image analysis 
since years. Many different approaches have been followed. However, few of them lead to 
qualitatively convincing results which are robust and under operational settings applicable. 
Often, the expectation to a segmentation result is to automatically extract all objects of 
interest in an image concerning a certain task. This strategy oversees the considerable 
semantic multitude which in most cases needs to be handled to come to such a final result. 
Or it leads to the development of highly specified algorithms applicable only to a reduced 
class of problems and image data.  
One of the simplest approaches to segmentation are all types of global thresholding. 
Typically they  are leading to results of a relatively limited quality. Region growing 
algorithms are clustering pixels starting on a limited number of single seed points. These 
algorithms basically depend on the set of given seed points, often suffering from a lack of 
control in the break off criterion for the growth of  a region. In many operational applications 
different types of texture segmentation algorithms are used. They typically obey a two-stage 
scheme [GEMAN & al. 1990, JAIN & FARROKHNIA 1991, MAO & JAIN 1992, HOFMANN & al. 
1998] : 
 
1. In the modeling stage characteristic features are extracted from the textured input 

image which range from spatial frequencies [BOVIK & al. 1990, JAIN & FARROKHNIA 
1991, HOFMANN & al. 1998], MRF-models [DERIN & COLE 1986, MANJUNATH & 
CHELLAPPA 1991, MAO & JAIN 1992, WON & DERIN 1992, PANFWANI & HEALEY 
1995], co-ocuurence matrices [HARALICK & al. 1973] to wavelet coefficients [SALARI & 
ZING 1995], wave packets [LAINE  & FAN 1996] and fractal indices [CHAUDHURI & 
SARKAR 1995]. 

2. In the optimization stage features are grouped into homogeneous segments by 
minimizing an appropriate quality measure. This is most often achieved by a few types 
of clustering cost functions [GEMAN & al. 1990,  JAIN & FARROKHNIA 1991, MAO & 
JAIN 1992, HOFMANN & al. 1998, MANJUNATH & CHELLAPPA 1991, WON & DERIN 
1992, PANFWANI  & HEALEY  1995, SHI & MALIK 1997] (citation: PUZICHA , BUHMANN , 
1998). A further possibility is the watershed transformation [Wegner & al 1997].  

 
Although texture segmentation leads to reproducible, for specific applications excellent and 
sometimes high speed results, they are mostly just applicable for a limited number of types 
of image data, texture types and problems. A further alternative are knowledge based 
approaches. They are trying to incorporate knowledge derived from training areas or other 
sources into the segmentation process [Gorte 1998]. These approaches deliver classified 
regions. Mostly they are specific, not necessarily robust and do not necessarily deliver 
homogeneous areas. 
Alternatively a segmentation method was developed which beneath the spectral and textural 
properties of the objects to be detected also takes into account their different size 
respectively. their different behavior on different stages of scale.  
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2 Design Goals 

The method presented in this paper is used to create object primitives as the first processing 
step in the object orientated image analysis software eCognition. The resulting image 
objects are the raw material for further classification and refinement procedures. 

High Quality Image Object Primitives: The primitives should be an universal high-quality 
solution applicable and adaptable to many problems and even textured image data of 
arbitrary type. 

Multiresolution: Objects of interest typically appear on different scales in an image 
simultaneously. The extraction of meaningful image objects needs to take into account the 
scale of the problem to be solved. Therefore the scale of resulting image objects should be 
free adaptable to f it to the scale of task.  

Similar Resolution: Almost all attributes of image objects – color, texture or form - are more 
or less scale-dependent. Only structures of similar size respectively scale are of comparable 
quality. Hence the size of all resulting image objects should be of comparable scale. 

Reproducibility: Segmentation results should be reproducible  

Universality: Applicable to arbitrary types of data and problems  

Speed: Reasonable performance even on large image data sets 

3 Criteria for the evaluation of segmentation results 

3.1  Quantitative Criteria  

Given 

• a certain definition of heterogeneity for image objects and  
• a certain average size of image objects (e.g. in pixels) 

possible criteria are:  

(1) average heterogeneity of image objects should be minimized; or 

(2) average heterogeneity of image objects weighted by their size in pixel should be 
minimized. 

In this contribution preference is given to the second criterion. Without any change it can 
be formulated as:  

(3) average heterogeneity of pixels should be minimized. Each pixel is weighted with the 
heterogeneity of the image object to which it belongs. 

This formulation emphasizes the requirement that each arbitrary area of an image needs to 
be taken into account in a similar way compared to any other. There must be a symmetric 
contribution of each area to the average heterogeneity of the segmentation result. 
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3.2  Qualitative Criteria 

A strong and experienced source for evaluation of segmentation techniques is the human 
eye. As segmentation procedures are used for automation of image analysis applications 
they are replacing the activity of visual digitizing. No segmentation result - even if 
quantitatively proofed - will convince, if it does not satisfy the human eye. One important 
prerequisite to reach this goal is the consistent handling of local contrasts. Another is the 
segmentation of image regions of a more or less similar dimension. A further important 
criterion for evaluation is the information which can be extracted from image objects for 
further successful processing.  

4 General Concept  

The procedure for the multi-scale image segmentation presented here can be described as a 
region merging technique. It starts with each pixel forming one image object or region. At 
each step a pair of image objects is merged into one larger object. The merging decision is 
based on local homogeneity criteria, describing the similarity of adjacent image objects. The 
homogeneity criterion is not only a ‘fit’ or ‘fit not’ criterion. A “merging cost” is assigned to 
each possible merge. These costs represent the degree of fitting. For a possible merge the 
degree of fitting is evaluated and the merge is fulfilled, if it is smaller than a given ‘least 
degree of fitting’. The procedure stops when there are no more possible merges. A small 
‘least degree of fitting’ permits fewer merges than a larger one. Therefore the size of the 
resulting image objects will grow with the ‘least degree of fitting’ value. Due to this 
property, the parameter will be termed in the following as the scale parameter. A merge with 
a better degree of fitting (i.e. smaller value) than the scale parameter is said to “fulfill the 
homogeneity criterion”. The two main components of multiresolution segmentation are: 

• Decision Heuristics to determine the image objects that will merge at each step 

• Definition of a homogeneity of image objects to compute the degree of fitting for a pair 
of image objects 

5 Decision Heuristics 

Given a definition for image object homogeneity (respectively heterogeneity) a method for 
finding the image objects for a merge is required. Starting with an arbitrary object A, different 
heuristics can be applied to find an adjacent object B for the merge. The following four 
possibilities are distinguished by an increasing constraint in terms of freedom of choice: 

Fitting: Merge A with any arbitrary neighbor object B for which the homogeneity criterion is 
fulfilled. 

Best Fitting: Merge A with that neighbor object B with which the homogeneity criterion is 
fulfilled best. ‘Best’ means the homogeneity is fulfilled concerning the scale parameter  and 
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the merge has the smallest degree of fitting value compared to all possible merges of A with 
any other adjacent object B’. 

Local mutual best fitting: For A find its neighbor object B with which the homogeneity 
criterion is fulfilled best. Find for B its neighbor object C with which B fulfills the 
homogeneity criterion best. Confirm that the homogeneity criterion is best fulfilled mutually 
(C = A). If not, repeat the same loop taking B for A and C for B. This heuris tic allows to find 
the best fitting pair of objects in the local vicinity of A following the gradient of 
homogeneity. 

Global mutual best fitting: Merge that pair of adjacent objects in the whole scene which 
fulfills the homogeneity criterion best. This heuristic does not follow a distributed treatment 
order. Instead the order is implicitly given by the heuristics.  

Distributed treatment order of image objects: Except for global mutual best fitting each 
decision heuristics needs a given image object A as starting point for the search of the 
merging pair. For the maintenance of a similar size/scale of all image objects it is necessary 
to let them grow in a simultaneous way. This can be achieved by choosing a sequence of 
starting points which fulfills the following two conditions (for each object taken into 
account the procedure performs one merge): 

1. Handle each point respectively each object once per cycle  
2. Distribute subsequent merges as far as possible from each other over the whole scene. 

A simple approximate solution for this problem is a procedure which handles each segment 
in the scene in a random sequence. It turns out that such a random sequence is sub optimal 
due to the percolation patterns or clusters which increasingly appear, starting at a certain 
density of points. Better procedures are sequences which are systematically taking points 
with maximum distance to all other points treated before. Such a procedure can for instance 
be derived from a dither matrix produced by a binary counter (Fig.1). 

 

Fig.1: Different states of a multiresolution segmentation of LandSat data using a 
distributed treatment order in form of a binary counter over a dither matrix. The 
growth of image objects is regular over the whole image. Adjacent image objects are 
always of more or less similar scale. 
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The distributed treatment order can be defined over pixels or over segments. If the order is 
defined over segments each object will be treated once per cycle. If the order is defined over 
pixels then for each pixel the object is treated to which the pixel belongs. Hence larger 
objects are treated more often per cycle than small objects, taking into account the larger 
area they are representing. 

6 Definitions for the ‘degree of fitting’ 

6.1  Difference between adjacent objects 

Given a certain feature space, two image objects are similar which are near to each other in 
this feature space. For an d-dimensional feature space the degree of fitting h reads as  

(4) ∑ −=
d

dd ffh 2
21 )(  

Examples for appropriate object features are for instance mean spectral values or texture 
features, such as the variance of spectral values. The distances can be furthermore 
standardized by the standard deviation over all segments of the feature in each dimension: 
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6.2  Change of heterogeneity in a virtual merge  

Starting with single pixels objects and merging them pairwise to larger objects at least 
spectral average heterogeneity of all image objects obviously will increase. Basic goal of an 
optimization procedure must be to minimize the incorporated heterogeneity at each single 
merge. An image object should be merged to that adjacent image object that yields a 
minimum increase of heterogeneity. 
Therefore we define the degree of fitting  of two adjacent image objects by describing the 
change of heterogeneity hdiff in a virtual merge. Given an appropriate definition of 
heterogeneity for a single image object the increase of heterogeneity in a merge should be 
minimized. There are different possibilities to describe the change of heterogeneity hdiff 
before and after a virtual merge:  

(6)  
2

21 hh
hh mdiff

+
−=  

This definition corresponds to the requirement of a quantitative criterion for the evaluation 
of a segmentation result given in (1). It can be improved by taking into account the objects 
size n: 
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An alternative is to weight image object heterogeneity with the object size, thus fulfilling the 
quantitative criterion in (2): 

(8) hdiff  =  (n1 + n2) hm    –  (n1h1 + n2h2)  =  n1(hm  - h1)  +  n2(hm  - h2) 

This definition can be generalized to an arbitrary number of channels c, each having a 
weight wc: 

(9) ( ) ( )( )cmccmc
c

cdiff hhnhhnwh 2211 −+−= ∑  

Appropriate definitions for spectral heterogeneity of image objects are for instance  

(10) the variance of spectral mean values or  

(11) the standard deviation of spectral mean values.  

6.3  Form Heterogeneity 

In the following two possible definitions for form heterogeneity are introduced. They can be 
incorporated into the spectral homogeneity. One is the deviation from the ideal compact 
form given by the relation between factual edge length l and the root of the object size n in 
pixels, i.e. the edge length of a square with n pixels. 

(12) 
n

lh =  

Another possibility to describe form homogeneity is the deviation from the shortest possible edge 
length given by the bounding box b of the segment. It is the relation between factual edge length l and 
the edge length of the bounding box. In a raster the edge length of the bounding box is also the shortest 
possible edge length for an arbitrary segment, i.e. l ≥ b holds for any image object. 

(13) 
b
l

h =  

7 Discussion 

Global mutual best fitting  is the strongest constraint for the optimization problem and it 
reduces heterogeneity most over the scene following a pure quantitative criterion. However, 
there is a significant disadvantage: It does not use the distributed treatment order and – in 
connection with a heterogeneity definition for color - builds first segments in regions with a 
low spectral variance. This leads to an uneven growth of image objects over a scene and to 
an unbalance between regions of high and regions of low spectral variance. The 
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quantitative difference of the result to local mutual best fitting is neglectable. Local mutual 
best fitting always performs the most homogeneous merge in the local vicinity following the 
gradient of the degree of fitting. This happens even if the region is of relative high spectral 
variance. Together with a distributed treatment order, the growth of image objects happens 
simultaneously as well in regions of low spectral variance as in regions of high spectral 
variance. Starting with an arbitrary image object the local mutual best fitting  heuristics 
switches in average 3 to 6 times to adjacent image objects until a pair of mutual best fitting 
objects was found. A distributed treatment order together with the local mutual best fitting 
guarantees a symmetric handling of regions of different texture and highly minimizes 
heterogeneity of resulting image objects in the same t ime. The distributed treatment order is 
essential for a regular growth of image objects over the whole scene (Fig. 1). Scanning 
algorithms or random sequences lead to more or less uneven distributions of image object 
size over the image. 
 
The degree of fitting  described in (4) and (5) in connection with the optimization procedure 
described in the previous sections already yield to non-bad segmentation results. However, 
they are sub-optimal. They are not based on a clear definition of heterogeneity per image 
object, which is required for obtaining comparable and optimizable results. Furthermore the 
criteria are not continuously increasing with the number of merges respectively with the 
image object scale and therefore may produce image objects with large differences in scale. 
Definitions (6) to (9) are certainly more precise. They prevent for instance a homogenous 
image object to be merged with a heterogeneous image object even if their mean values are 
similar (Fig. 2). 
In contrast to (6) and (7), definitions (8) and (9) are showing continuously increasing values 
with increasing number of merges resulting in a constant and distributed growth of image 
objects. A clear definition of heterogeneity per object allows to compare different 
segmentation results and different optimization procedures. 
 
Especially definition (9) in connection with spectral variance or spectral standard deviation 
for heterogeneity leads to convincing results. The resulting image objects are highly 
homogenous, contrasts are represented by image objects consistently and segmentation 
results are highly reproducible with only slight differences of the edges between objects of 
low contrast. 
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Fig. 2: Multiresolution segmentation of airborne image data: trees and meadows are of 
similar spectral value. They are separated because of the high difference in 
spectral homogeneity. Following criterion (9), the merge of a homogeneous image 
object to a heterogeneous image object would result in a big change of 
heterogeneity for the homogeneous object. 

For principle reasons it only makes sense to use the form criteria (12) and (13) mixed with the 
spectral criteria (10) or (11). Without taking into account spectral information of an image 
there are no meaningful objects on which form could be optimized. The behavior of the form 
criteria in terms of optimization is not as good as that of the spectral criteria. Segmentation 
results are therefore not as reproducible as with spectral criterion only. However, especially 
in strongly textured image data the form criteria can help to maintain smooth edges or a more 
or less compact form. Qualitatively, such objects are often much more convincing and useful 
then objects of an irregular or branched shape. 

8 Results 

The multiresolution segmentation produces highly homogeneous image objects in arbitrary 
resolution on different types of data (Fig. 2,3). All three aspects are of considerable 
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advantage and allow to apply this segmentation technique with good results to many 
different types of image data and problems.  
 
Texture segmentation as also threshold procedures are fully reproducible because they do 
not rely on criteria which are calculated during the process itself. They are basically using 
existing criteria or criteria calculated a priori. However, often they don’t tre at local contrasts 
in a satisfying way, quality may vary between image objects. In contrast, the multiresolution 
segmentation presented here is object oriented: each decision for a merge is based on the 
concrete recent attributes of the image objects merged in previous steps. This turns out to 
be the decisive methodical advantage of the method: each decision is based on attributes of 
homogeneous structures of a recent scale. There are for instance no filter operations 
typically defined on a (small) fixed-s ized window and thereby unaware to generate 
representative homogeneous areas. 

 

Fig. 3: Image objects in different resolutions extracted based on airborne radar data. This 
example also demonstrates the capability of multiresolution segmentation to work 
on relatively strong textured image data. 

The advantage of the object-oriented procedure is paid with a certain moment of historicity 
resulting in the loss of full reproducibility. Different decisions in the past may cause 
different decisions in the future. However, the arising differences are found on edges 
between objects of low contrast, where indeed the shape of an edge is more or less arbitrary. 
If the resulting objects are further classified, in many cases such objects of low contrast are 
assigned to the same class. Furthermore image objects of smaller scale can be produced 
instead. On smaller scale fine contrasts are better represented then on larger scale. The 
differences between the segmentation results therefore will be moved to a smaller scale 
respectively to finer contrasts, where they do play a less significant role. 
 
Multiresolution segmentation is one basic procedure in the software eCognition  for object 
oriented image analysis (Delphi2 Creative Technologies, Munich). It is used here to produce 
image object primitives as a first step for a further classification and other processing 
procedures. As a part of the beta-version of eCognition multiresolution segmentation was 
successfully applied to many different problems in the fields of remote sensing, medical 
image analysis and structure analysis [BAATZ & SCHÄPE 1999a,1999b; BUCK & al. 1999a, 
1999b; DE KOK & al.: 1998, 1999a,1999b; KNOKE 1999; NIEMAYER 1999 & 2000; SCHMIDT 
2000, SCHNEIDER & al. 1998].  
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