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ABSTRACT: 
 
Segmentation algorithms have already been recognized as a valuable and complementary approach that similar to human operators 
perform a region-based rather than a point-based evaluation of high-resolution and multi-source remotely sensed data. Goal of this 
paper is to summarize the state-of-the-art of respective segmentation methods by describing the underlying concepts which are rather 
complex in the case of processing remotely sensed data, demonstrating various applications (automatical object recognition, signal-
based fusion as support for visual interpretation, and estimation of the terrain surface from Digital Surface Models), and identifying 
yet existing problems and further research and development needs. 
 
 

1. INTRODUCTION 

Remote sensing data are an important source for generating or 
updating GIS databases in a variety of applications. As a 
reaction to the limitations of the available data sources with 
respect to their spatial resolution and inherent information 
content, in the last ten years the focus was laid on the 
development of advanced sensors, for instance laser scanners 
(presently, about 65 operational airborne systems world-wide), 
radar-interferometric sensors (e.g., the Shuttle Radar 
Topographic Mission), or electro-optical cameras with in-flight-
stereo capabilities (e.g., airborne systems like ADS 40, DMC or 
HRSC-A, and spaceborne systems like Ikonos or Quickbird). In 
order to increase the information potential for interpretation 
purposes, multi-sensor systems have been developed for the 
simultaneous acquisition of image and elevation data (e.g., the 
TopoSys II sensor). 
 
However, with these sensors the user community faces new 
problems in the automatical analysis of these types of data: 
 
1. The high spatial resolution of the advanced sensors 

increases the spectral within-field variability - in contrast 
to the integration effect of earlier sensors - and therefore 
may decrease the classification accuracy of traditional 
methods on per-pixel basis (like the Maximum-Likelihood 
method). Hence, novel and efficient analysis techniques 
become a mandatory requirement for efficient processing 
and analysis.  

2. The availability of multi-sensoral or even multi-source data 
(e.g., existing information from Geographical Information 
Systems, GIS) is strongly correlated with the necessity for 
a fusion on data but in particular on feature or decision 
level (Pohl & van Genderen, 1998). Unfortunately, many 
standard techniques are not able to handle heterogeneous 
data sources and context information. 

 
In this context, segmentation algorithms have already been 
recognized as a valuable and complementary approach that - 

similar to human operators - create regions instead of points or 
pixels as carriers of features which are then introduced into the 
classification stage. The conceptual idea is that each of these 
regions corresponds exactly to one and only one object class 
(object oriented approach). Furthermore, segmentation 
algorithms are able to handle multiple data and information 
sources, thus performing a fusion on feature level. 
 
Goal of this paper is to summarize the state-of-the-art of the use 
of segmentation algorithms for various processes applied to 
remotely sensed data by describing the underlying concepts 
which are rather complex in this case (chapter 2), demonstrating 
various applications as carried out at our institute (automatical 
object recognition, signal-based fusion as support for visual 
interpretation, and estimation of the terrain surface from Digital 
Surface Models; chapter 3) and identifying yet existing 
problems and further research and development needs (chapter 
4). 
 
 

2. CONCEPTS OF SEGMENTATION ALGORITHMS 

Segmentation is the process of completely partitioning a scene 
(e.g., a remote sensing image) into non-overlapping regions 
(segments) in scene space (e.g., image space). 
 
Respective algorithms have been developed within Pattern 
Recognition and Computer Vision since the 1980's with 
successful applications in disciplines like medicines or 
telecommunication engineering. However, due to the 
complexity of the underlying object models and the 
heterogeneity of the sensor data in use, their application in the 
fields of Remote Sensing and photogrammetry was limited to 
special purpose implementations only. With the advent of high-
resolution as well as multi-source data sources the general 
interest in segmentation methods has become evident again, and 
at last significant progress in terms of user awareness was 
achieved with the introduction of the first commercial and 
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operational software product (eCognition by Definiens-
Imaging) in the year 2000.  
 
In the following we will briefly describe the general concepts of 
segmentation methods (section 2.1) and will emphasize the 
particularities for the evaluation of remotely sensed data 
(section 2.2). 
 
 
2.1 General concepts 

2.1.1  Principles and strategies: Basic task of segmentation 
algorithms is the merge of (image) elements based on 
homogeneity parameters or on the differentiation to 
neighbouring regions (heterogeneity), respectively. Thus, 
segmentation methods follow the two strongly correlated 
principles of neighbourhood and value similarity. 
 
Generally the following strategies for partitioning a scene into 
regions are distinguished: 
 
• point-based 
• edge-based 
• region-based 
• combined 
 
Point-based approaches are searching for homogeneous 
elements within the entire scene by applying global threshold 
operations which combine such data points that show an equal 
or at least similar signal or feature value. This threshold can 
divide the feature space into two or more parts (binarization or 
generation of equidensites, resp.). The choice of threshold 
values can be performed statically or dynamically based on 
histogram information. 
  
Because this grouping has not considered the principle of 
neighbourhood so far, a connection analysis in scene space is 
performed in a second step. Here, spatially connected elements 
(components) of equal value (e.g., grey value "1") are grouped 
to one region (component labeling). 
 
It has to be noted that point-based approaches are less suitable 
for the evaluation of remotely sensed data due to varying 
reflection values for a certain object placed at different locations 
within the real world and the sensed scene (as an example see 
figure 1, middle). 

 

Edge-based approaches describe the segments by their outlines. 
These are generated through an edge detection (e.g., a Sobel 
filtering) followed by a contour generating algorithm. 
Optionally, the transition from the outlines to the interior region 
can be achieved by contour filling methods like the watershed 
algorithm. 
 
As figure 1 (right) demonstrates, the main disadvantage of edge-
based approaches is that the edge and also the contour image is 
strongly affected by noise (in particular in wooded regions, less 
crucial for artificial objects) which may lead to an unacceptable 
over-segmentation. 
 
Region-based approaches start in the scene space where the 
available elements (pixels or already existing regions) are tested 
for similarity against other elements (see section 2.1.2). 
Concerning the definition of the initial segmentation the 
procedures of region growing (bottom-up, i.e. starting with a 
seed pixel) and region splitting (top-down, i.e. starting with the 
entire scene) are distinguished. One disadvantage of the 
splitting method is that it tends to an over-segmentation because 
a splitting always produces a fixed number of sub-regions 
(normally: 4) although two or three of them might actually be 
homogeneous with respect to each other. As a consequence, one 
can apply a method combination which leads to the split-and-
merge algorithm that after every split tests whether 
neighbouring regions are so similar that they should be re-
merged again.  
 
In the following explanations and applications we will mainly 
rely on region growing approaches. 
 
 
2.1.2 Homogeneity criteria: In the following the 
realization of the principle of value similarity (or homogeneity, 
resp.) will be discussed more in detail. Given two elements A 
and B (i.e. pixels or regions) one possibility for deriving a 
homogeneity measure is to compare a certain feature of A and B 
(e.g., the grey value) through its Euclidian distance. In addition, 
it is also possible to consider simultaneously multiple features fi 
(i=1, ..., n) of A and B, with the option to introduce individual 
weights gi. Hence, a fusion on feature level is realized which 
gives the corresponding heterogeneity measure ∆h by: 
 

  
Figure 1. Given image (left) and exemplary point-based segmentation with four classes (middle), 
 and contours as input for edge-based segmentation (right) - data courtesy of TopoSys GmbH - 
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As an alternative, the homogeneity measures can be computed 
before and after an eventual merge of the elements A and B. 
 
With the obtained measure ∆h it can be decided whether the 
elements A and B have to be merged to a larger segment or not. 
This is done by a comparison with a threshold that controls the 
size and number of segments and with that the level of 
generalization of the segmentation process (see also section 
2.1.3). 
 
The merging algorithm can also consider further constraints 
concerning neighbourhood and similarity: In the simplest case 
element A accepts B if the homogeneity measure is below the 
given threshold (fitting). In contrast, A may accept only that 
neighbouring element B which fulfills the homogeneity 
criterion best (best fitting). Furthermore an element C is 
connected to A (which is similar enough to B) only if B and C 
as well as A and C are similar enough (local mutual best 
fitting). 
 
2.1.3 Evaluation of segmentation: In general the described 
segmentation methods do not yield a perfect partition of the 
scene but produce either too much and small regions (over-
segmentation) or too less and large segments (under-
segmentation). The first effect is normally a minor problem 
because in the following classification step neighbouring 
segments can be attached to the same category a posteriori. 
 
Applying segmentation methods to remotely sensed data we can 
observe that over- and under -segmentation can occur within a 
single scene depending on the heterogeneity of objects under 
consideration. As figure 2 shows, natural objects tend to be 
stronger partitioned than regular artificial objects. Furthermore, 
different levels of generalization are desired depending on the 
specific applications (e.g., evaluation scales). For instance, 
some applications may demand for the delineation of single 
trees while others need larger wooded areas. 

 
Figure 2. Simultaneous over- and under-segmentation within a 

remote sensing scene - data courtesy of TopoSys GmbH –  

Methods for the evaluation of segmentation results are 
discussed for example by Hoover et al. (1996), Zhang (1996) or 
Levine & Nazif (1985). In the last case the authors also present 
developments for a dynamical determination of the 
segmentation quality by continuously computing homogeneity 
measures of all intermediate regions. However, it has be noted 
that presently the most reliable evaluation method is still a 
visual interpretation that has to consider the exact geometrical 
position of the segment borders as well as the membership of 
one and only one object class to a single region. However, with 
that the generalization level as well as the homogeneity features 
and parameters are controlled in a rather subjective manner. 
 
 
2.2 Particularities for evaluating remotely sensed data 

Numerous segmentation methods have already been developed 
for various applications, including medicines, 
telecommunication engineering or the analysis of dynamic 
scenes in neuro-informatics. Consequently, the available 
software products are originating from these or similar 
disciplines. 
 
As already mentioned at some places in section 2.1 several 
reasons lead to the fact that existing methods and 
implementations from these disciplines can not be directly 
transferred to the domain of remote sensing, in particular: 
 
• Remote sensing sensors are producing multi-spectral, 

sometimes also multi-scale input data, so that in contrast to 
the most often used panchromatic and monoscopic image 
data in the disciplines mentioned above not only the 
complexity but also the redundancy increases. 

• Manifold additional data (e.g., GIS or elevation data) are 
available. 

• In contrast to other applications various objects of 
heterogeneous properties with respect to size, form, 
spectral behaviour, etc. have to be considered. 

• General multi-scale evaluation tools have not been 
developed. They exist only for some limited areas, for 
instance for the extraction of roads from aerial imagery 
(Ebner et al. 1998). 

• In contrast to other applications a model-based 
interpretation is much more difficult due to the 
heterogeneity of the inherent object classes;  

 
Hence, segmentation algorithms have been introduced relatively 
late for the analysis of remotely sensed data (e.g., Ryherd & 
Woodcock 1996). As a consequence, the first commercial 
software packages were introduced not before the year 2000, for 
example the Stand Delineation Tool of the Finnish company 
Arboreal for forest inventory purposes (Arboreal, 2002) or 
eCognition (Definiens-Imaging 2002) that aims at a more 
general use.  
 
In conclusion segmentation approaches for the evaluation of 
remotely sensed data have to be rather complex systems that 
should 
 
• handle various input data simultaneously (multi-source 

aspect) 
• integrate a couple of segmentation strategies serving for all 

object types which shall be extracted (multi-method aspect) 
• create various levels of generalization at the same time - 

due to the fact that different objects are represented best at 

over-segmentation 

   under-segmentation 



 

 different scales (multi-scale aspect). 
 
 

3. APPLICATIONS 

In the following we will give an insight into the various 
applications of segmentation methods with respect to the 
evaluation of remotely sensed data - also considering the above 
mentioned specific aspects. Not surprisingly, the emphasis of 
the usage is on automatical object recognition tasks (section 
3.1), but we will also demonstrate alternative applications such 
as signal-based fusions for visual interpretation purposes 
(section 3.2), and the terrain surface estimation from Digital 
Surface Models (section 3.3). 
 
 
3.1 Automatical object recognition 

3.1.1  Brief overview: A couple of scientific work has been 
undertaken on the use of segmentation methods for the 
extraction of certain features from close range photogrammetric 
imagery on one hand, and for the detection of object classes 
from multi-spectral or panchromatic imagery, for example 
considering buildings (e.g., Brenner, 2000), buildings and roads 
(Hoffmann, 2001), or airports (McKeown et al., 1985). Only a 
limited number of work is concerned with a more detailed 
classification, for instance Bauer & Steinnocher (2001) perform 
a recognition of 11 object classes in an urban scene. 
 
3.1.2 Biotope monitoring project: A concrete project at 
our institute had the purpose to test the applicability of data of 
the High Resolution Stereo Camera–Airborne (HRSC-A; 
Wewel et al. 1998) for the classification of biotope types on 
reaches of Federal waterways characterized by strong relief 
features. The data are based on a flight mission along a reach of 
the Main-Danube Canal commissioned by the German Federal 
Institute of Hydrology (BfG), Koblenz. The spatial resolutions 
amount to 30 cm in the case of the multi-spectral and 200 cm in 
the case of the Digital Surface Model (DSM) which has been 
derived by automatical matching (estimated accuracies ± 20 to ± 
30 cm in planimetry, ± 50 cm in height. A land use vector data 
set is available based on a field survey. 
 
Aim of our study is the classification of the land use/land cover 
in this rural test site. The object catalogue comprises the 
following classes: channel, cultivated field, bare field, forest, 
smaller groups of trees, shrubbery and roads. The objects 

exhibit a large range of different scales ranging from small 
shrubs to large cultivated fields. 
 
Using the hierarchical approach of the eCognition software the 
segmentation is performed at different levels of generalization. 
The best segmentation results are achieved with different 
spectral combinations and weighting factors for the different 
bands with respect to the object classes. As figure 3 
demonstrates, a much higher degree of detail could be achieved 
with the segmentation approach compared to the biotope 
classification based on the field survey. For a more detailed 
project description refer to Schiewe et al. (2001). 
 
 
3.2 Signal-based fusion for visual interpretation 

There are a couple of reasons still to deal with aspects of the 
visual interpretation of imagery. On one hand, most of the 
(semi-) automatical object recognition procedures do not lead to 
satisfying results. On the other hand, an increasing number of 
airborne and spaceborne sensors produce spatially lower 
resolution but multi-spectral data as well as higher resolution 
but pan-chromatic data (e.g., Ikonos, Quickbird) so that a 
signal-based fusion of the above mentioned image data prior to 
a visual interpretation is very often demanded. Such a fusion 
shall combine the respective advantages, in particular 
 
• emphasize certain image features (e.g., gradients, colors), 
• substitute missing information (e.g., in shadow regions), 
• improve geometrical corrections (e.g., by using data of 

higher geometrical accuracy), 
• enable stereoscopic evaluations by merging stereo partners, 
• detect changes in multi-temporal data sets. 
 
Unfortunately conventional, point-based operating signal-based 
fusion methods do not lead to reasonable and sustainable 
results. One key problem is that a couple of procedures yield a 
bad color reproduction and a decrease of the global contrast 
which is mainly due to the neglecting of the fact that the input 
channels are normally decorrelated to each other. Furthermore 
important structural information (e.g., edges) get lost very often 
if multi-spectral and panchromatic imagery are treated in the 
same manner (Schiewe, 1999). 
 
Our alternative approach which is still under development 
follows the idea to combine multi-spectral and panchromatic 
data not point-wise (using global operations) but in a region-
based manner applying different and suitable functional models. 
In a first step, the segmentation partitions the image set based 
on information about the texture, dominance of certain colors, 
existence of edges, and high correlation between certain bands. 
 
In the classification step appropriate functional models are 
attached to the segments according to their specific properties 
(e.g., contrast). In this context it has been found that additive 
approaches generally emphasize color information while 
multiplicative algorithms (e.g., the Brovey transformation) show 
off structural information (Schiewe, 1999). 
 
 
3.3 Terrain surface estimation from DSMs 

Most elevation evaluation systems (like stereo matching or 
laserscanning) produce the respective largest values above a 
position, i.e. a Digital Surface Model (DSM). However, for 
some applications (e.g., for hydrological modeling) those Figure 3. Improved degree of details of segmentation 

compared to biotope classification based on field survey 
 



 

objects that stand clearly above the terrain surface (e.g., 
buildings, trees) are not of interest, i.e. the Digital Terrain 
Model (DTM) is required. Furthermore, for object extraction 
purposes and virtual city modeling the absolute object heights 
above the terrain surface (i.e., the differences between DSM and 
DTM) are needed. Because in practise a DTM is not always 
available, not sufficiently accurate or reliable enough, or too 
expensive, a substitute has to be estimated (estimated DTM, 
eDTM), i.e. a normalization has to take place. For this task a 
couple of geometrically based algorithms have been developed 
(for an overview see Schiewe, 2001), but none of them has 
succeeded to operationality so far due to the limited quality 
(especially for inclined terrain) and the missing grade of 
automatization (especially due to abstract thresholds). Thus, an 
application dependent combination of methods incorporating 
rather high interactive efforts for controlling and editing are 
presently applied in practise.  
 
In the following we want to present a novel region-based, multi-
scale approach for the task of terrain surface estimation. Firstly, 
for the segmentation a proper choice of homogeneity criteria 
has to be applied. Here we follow the hypothesis that regions 
which have to be reduced to the terrain surface are characterized 
by strong altitude gradients and curvatures (Schiewe, 2001). By 
extending the complexity presented so far by additionally 
introducing multi-spectral or pan-chromatic image data, we 
have experienced worse segmentation results due to irregular 
and inaccurate border lines. This effect is mainly due to a strong 
affection of image data by noise and shadows. 
 
For the interpretation of the obtained segments we apply a fuzzy 
logic classification approach. There are several reasons for 
introducing partial rather than crisp memberships in this context 
(e.g., see Cheng, 2002): On one hand the description of the real 
phenomenon is neither geometrically sharp (e.g., there is no 
exactly defined border between forest and terrain) nor 
standardized (e.g., there are no generally accepted instructions 
for masking out brush, bridges, etc.). On the other hand the 
limited spatial sampling rates and measurement errors (the latter 
being mostly unknown) also lead to indeterminate boundaries. 
 
As classification features the mean of altitude gradients 
(pointing to forest areas) and the 90% percentile of gradients 
(pointing to steep edges likes in buildings) can be taken into 
account. In order to handle the problem of flat roofs (i.e., 
segments with low gradients), we also consider the 90% 
percentile of gradients of all surrounding segments (referring to 
a building edge with high gradients). Finally, the mean 
difference between first and lust pulse laser scanning 
measurements, if available, can be taken into account for each 
segment (also pointing to wooded areas and building outlines).  
 
In some cases it is of interest for the generation of the estimated 
DTM which object type is associated to a non-terrain area. For 
instance, for hydrological modeling tasks an interpolation 
within wooded areas is meaningful while for buildings it is not. 
Hence, an additional separation of buildings from wooded areas 
in the classification step becomes necessary. Besides the 
normalized DSM altitude especially the Normalized Difference 
Vegetation Index (NDVI) or the spectral texture (in pan-
chromatic imagery) are meaningful features. 
 
Figure 4 illustrates the processing results after applying the 
described region-based approach. The multi-sensor data set 
which covers a settlement near the City of Ravensburg 
(Germany) consists of simultaneously acquired laserscanning 

and multi-spectral image data of the TopoSys II sensor 
(TopoSys, 2002). As an example, the fuzzification result for the 
feature "mean gradient" demonstrates the desired high 
membership values of wooded areas to the class of non-terrain 
areas as well as the necessity of taking also the gradients of 
surrounding segments of roof regions into account. 

 
Figure 4. Intermediate results of terrain surface estimation: 

fuzzification based on "mean gradient" (left) and classification 
of non-terrain areas (in grey; right) - the test site is identical to 

that shown in figures 1 and 2 
 
Comparing the achieved results for both tasks - normalization 
and separation of buildings and other objects - no omission 
errors have been found. The number of commission errors is 
below 2% of the entire number of segments. Critical regions 
within the terrain surface estimation process are small clearings 
within wooded areas whose slope behaviour in contrast to the 
surrounding trees could not be sufficiently separated. Applying 
the segmentation and the following classification not only at 
one, but at multiple scales, reduces the number of commission 
errors with decreasing generalization level. However, this 
scaling process must not be performed as far as possible 
because the number of omission errors would increase and in 
the extreme case one would end up with an undesired point-
wise classification. 
 

4. PROBLEMS 

As already indicated the key problems of an operational use of 
segmentation algorithms for evaluating remotely sensed data are 
closely related to the specific aspects as pointed out in section 
2.2. While the integration of multi-sensoral and multi-source 
data is comparably highly developed (with some deficiencies 
left; see e.g. Schiewe et al., 2001), the realization of the multi-
scale and multi-method aspects are yet far away from maturity. 
 
Varying the homogeneity thresholds it is no problem to 
generate segmentations at different levels of generalization. On 
the other hand a proper as well as an automatical choice of this 
level is still not possible and left to an iterative process of visual 
inspections and modifying the respective parameters. This 
problem is not only due to missing functionality within the 
segmentation software products but also to the difficult 
definition of generalization levels for given applications. It 
becomes obvious that corresponding work from the cartography 
domain (e.g., McMaster, 1991; Sester, 2000) has still to be 
transferred to segmentation algorithms. In particular, rules for 
the generalization operations of combining (agglomerating) 
elements have to be taken into account which obviously has to 
be done in a closed and recursive connection to the 
classification process. 
Concerning the use of different segmentation methods and 
parameters for delineating different object types it has to be 

 

 



 

noted that only little achievements have been made so far. It is 
obvious that this idea implies a fusion of methods or results. In 
this context Clement et al. (1993) demonstrate a potential 
realization which still has to be investigated further and has to 
be transferred to other applications like the evaluation of high 
resolution and multi-source data. In order to minimize the 
complexity of the fusion a selection of a minimum number of 
significant features should be aimed for. Pinz et al. (1996) 
present their corresponding concept called active fusion that 
integrates prior knowledge and gives recommendations for the 
further control of the segmentation process. 
 
In general, it is also desirable to perform the segmentation and 
the following classification in a hybrid rather in a purely data-
driven or model-driven manner. In order to introduce human 
and GIS-based knowledge respective concepts (e.g., semantical 
nets) have to be linked to segmentation approaches in order to 
enable a better control and evaluation of the process. 
 

5. CONCLUSIONS 

Traditional multi-spectral classification methods on pixel basis 
are no longer suited for the evaluation of high-resolution and 
multi-source data from remote sensing. Region-based 
approaches consisting of a segmentation and a classification 
step have already proven to be a satisfying alternative solution.  
 
From a conceptual point of view segmentation algorithms for 
the evaluation of remotely sensed data have to take into account 
in particular the availability of multi-source data as well as the 
need for multi-method and multi-scale functionality in order to 
model the heterogeneous objects under consideration in a 
flexible and adaptive way. While a feature level fusion of multi-
source data is no severe problem anymore, the other two aspects 
still need a lot of research and development work. 
 
The huge bandwidth of applications of segmentation 
approaches that has also been outlined here will certainly lead 
to further progress which is needed in order to use the full 
potential of the novel remotely sensed data.  
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