Ableitung von Volumsklassen aus Landsat 7-Daten in borealen sibirischen Wäldern

von
Georg Pircher
I-39015 St.Leonhard in Passeier, Stickl 11

ausgeführt am Institut für Vermessung, Fernerkundung und Landinformation
A-1190 Wien, Peter Jordan Strasse 82

Betreuer: Univ. Prof. Dipl.-Ing. Dr. Werner Schneider
Mitbetreuer: Univ. Ass. Dipl.-Ing. Gebhard Banko

Wien, im September 2002
Kurzzusammenfassung

Abstract

The objective of this thesis was the development of a method for determining stand volume classes and tree species composition based on Landsat 7 data in boreal Siberian forests. Forest inventory data of four Test sites, each covering over 20,000 ha, were available. The correlation between important stand parameters and spectral response was analysed. Using an object-oriented image analysis software package based on image segmentation it was possible to differentiate between five stem volume classes and four classes of species composition within forested areas. Accuracy assessment was accomplished by an error matrix based on ground truth data. The results can serve for optimising data collection for regional forest applications and for supporting national carbon accounting, which is important for commitments regarding climate protection.
Vorwort

Die vorliegende Diplomarbeit widme ich meinen Eltern, die meine Entscheidungen immer vorbehaltlos unterstützt haben und durch ihre finanzielle Hilfe mir das Studium erst ermöglichten.

Ein Dankeschön geht auch an alle Studienkollegen und Freunde, an der Universität, im Studentenheim und zu Hause, welche die Zeit des Studiums durch gemeinsame Diskussionen und Erlebnisse ungemein bereichert haben.

Für die interessierte Betreuung und Unterstützung der Diplomarbeit bedanke ich mich bei meinem Diplomarbeitsbetreuer Prof. Dr. Werner Schneider sowie bei meinem Mitbetreuer Dipl.-Ing. Gebhard Banko.

Weiters möchte ich allen Mitarbeitern des Institutes für Vermessung, Fernerkundung und Landinformation für ihre kollegiale Hilfe bei größeren und kleineren Problemen danken.

Spezieller Dank geht an die IIASA (International Institute for Applied Systems Analysis) Laxenburg, einem Projektpartner im EU-Projekt SIBERIA (SAR Imaging for Boreal Ecology and Radar Interferometry Applications), für die Bereitstellung der Datengrundlage; namentlich möchte ich meinen Ansprechpartner Ian McCallum sowie den Leiter des Forest Resources Projects Sten Nilsson nennen.
1 EINLEITUNG ... 1

1.1 HINTERGRUND .. 2
1.2 AUFGABENSTELLUNG ... 4
1.3 VORGEHENSGEWEISE ... 5

2 KLINMASCHUTZ UND WALDWIRTSCHAFT .. 7

2.1 INTERNATIONALE ABKOMMEN ZUM KLINMASCHUTZ ... 7
2.1.1 Die UN-Klimarahmenkonvention .. 7
2.1.2 Das Protokoll von Kyoto .. 7
2.1.3 Die Ausgestaltung des Protokolls von Kyoto ... 9
2.2 DER WALD IM KOHLENSTOFFKREISLAUF .. 9
2.2.1 Der Wald als Kohlenstoffspeicher ... 9
2.2.2 Fallstudie Russland ... 11
2.2.1.1 Methode und Bedeutung ... 11
2.2.2.2 Ergebnisse ... 12
2.3 DER BEITRAG DER FERNERKUNDUNG .. 13

3 SATELLITENFERNERKUNDUNG .. 15

3.1 DAS LANDSAT-PROGRAMM .. 15
3.1.1 Überblick .. 15
3.1.2 Landsat 1, 2 und 3 .. 17
3.1.3 Landsat 4, 5 .. 17
3.1.4 Landsat 6, 7 .. 19
3.1.5 Bedeutung der Landsat-Daten ... 22
3.2 AUSGEWÄHLTE SENSORIM OPTISCHEN SPEGTRALBEREICH .. 22
3.2.1 SPOT und IRS ... 22
3.2.2 Neue Entwicklungen .. 23
3.2.3 Photographische Systeme .. 24
3.3 RADARERKUNDUNG .. 24
3.3.1 Übersicht .. 24
3.3.2 Radarsatelliten ... 26
3.3.3 Anwendungsbereich Forstwirtschaft .. 27

4 REFLEXIONSVERHALTEN VON VEGETATION .. 28

4.1 REFLEXIONSVERHALTEN VON BLATTORGANEN ... 28
4.1.1 Spektralbereich sichtbares Licht ... 29
4.1.2 Spektralbereich nahes Infrarot ... 29
4.1.3 Spektralbereich mittleres Infrarot ... 30
4.2 REFLEXIONSVERHALTEN VON WALDBESTÄNDEN ... 30
4.3 SPEKTRALE VEGETATIONSINDIZES .. 32

5 EINSATZ VON LANDSAT-DATEN IN DER FORSTWIRTSCHAFT ... 34

5.1 ERSTE ANWENDUNGEN ... 34
5.1.1 Extensiv bewirtschaftete Wälder .. 34
5.1.2 Globale Inventuren .. 35
5.2 ANWENDUNGSBEISPIELE MITTELEUROPA ... 35
5.2.1 Mehrphasige und nationale Waldinventuren ... 36
5.2.2 Waldtypenkartierung .. 37
5.2.2.1 Kartierung von Hauptwaldtypen .. 37
5.2.2.2 Differenzierung auf Bestandesebene .. 39
1 Einleitung

Die vorliegende Diplomarbeit beschäftigt sich mit der computergestützten Auswertung von Satellitendaten und ist somit im Überschneidungsbereich von mehreren sich schnell weiterentwickelnden Technologiefeldern angesiedelt.

Heute umkreisen eine große Anzahl erdbeobachtender Satelliten mit verschiedensten Sensoren (Radar, hyperspektrale Aufnahmesysteme), Auflösungsvermögen und Wiederholungsraten die Erde, sodass ein vielfältiges Angebot an Fernerkundungsdaten besteht und Satellitenbilder mit einer Bildelementgröße, die am Boden 1 m x 1 m entspricht, für jedermann erhältlich sind. Gleichzeitig entwickelte sich die Beschaffung und Auswertung von Fernerkundungsdaten von experimentellen wissenschaftlichen Untersuchungen zum Inhalt privatwirtschaftlicher Unternehmungen.

Verschiedene Programmpakete vereinfachen die Integration von Fernerkundungsdaten in geographische Informationssysteme, was zu einer vermehrten Nutzung und Einbeziehung in raumbezogene Planungen führt.

Diese Möglichkeiten und Softwarelösungen wurden erst durch Entwicklungen der Computertechnik ermöglicht. Die Steigerung der Rechenleistung und die Verfügbarkeit von Speicherplatz vereinfachten die Handhabung von großen Datenmengen, wie sie in der Bildbearbeitung anfallen, und ermöglichen eine rasche Datenanalyse - nicht mehr ausschließlich auf Spezialcomputern.

Die weltweite Vernetzung durch das Internet wiederum eröffnet neue Möglichkeiten der Datenbeschaffung. Von einer bequemen Datenvorschau, über eine Bestellung entsprechender Aufnahmen, bis hin zur Bereitstellung innerhalb weniger Stunden konnte die Verfügbarkeit aktueller Daten optimiert werden.

Sowohl die Möglichkeiten der Fernerkundung als auch der Einsatz modernster Computertechnologien stellen keine Lösungen an sich dar, sondern sind nur Hilfsmittel für die Bearbeitung drängender Fragen zur Entwicklung unserer Umwelt. Am Ende jedes Fernerkundungssystems, welches grob aus Datenaufnahme, Datenspeicherung und Datenauswertung besteht, stehen Wissenschaftler und Planer. Obwohl die Erde in einem gewissen Sinne überschaubar geworden ist und riesige Datenmengen über den Zustand der Umwelt zur Verfügung stehen, bleibt entscheidend, was daraus gemacht wird und wie Ergebnisse und Lösungsvorschläge verwendet bzw. umgesetzt werden.

1.1 Hintergrund

Anstoß für die vorliegende Arbeit waren die Ergebnisse des Projektes SIBERIA (SAR Imaging for Boreal Ecology and Radar Interferometry Applications), welches das Potenzial von Fernerkundungsmethoden zur Überwachung und Kartierung borealer Waldökosysteme untersuchte. Dessen Ziel war die Bereitstellung von Grundlagen und Hilfsmitteln für die Entwicklung von nachhaltigen Bewirtschaftungskonzepten auf strategischer und operativer Ebene zur ökologischen und effizienten Bewirtschaftung des sibirischen Waldes.

Das Hauptaugenmerk lag dabei auf der Untersuchung der Anwendbarkeit von Radardaten für großräumige Vegetationskartierungen. Es wurden Daten der Satelliten JERS, ERS-1 und ERS-2 verwendet, wobei das Interesse, neben der Auswertung der Rückstreu-Intensitäten, hauptsächlich auf der Analyse der Kohärenz zeitnah hintereinander aufgenommener Radar-Datensätze (Interferometrie) der ERS-Tandem-Mission lag. Es
Kapitel 1: Einleitung

wurden ebenso eine kombinierte Auswertung von Radardaten und optischen Satellitendaten getestet und die Ergebnisse der Radar-Auswertungen mit den Ergebnissen aus optischen Daten verglichen.

Radarsensoren (Kapitel 3.3) können als aktive Systeme vom Sonnenlicht und den Wetterverhältnissen unbeeinflusst verwertbare Daten produzieren, was in Gebieten wie Sibirien (mit flachem Sonneneinfallswinkel und häufiger Wolkenbedeckung) wesentliche Vorteile darstellt. Allerdings können Radardaten zur Zeit noch nicht so detaillierte Auswerteergebnisse wie optische Satellitendaten liefern. Die Verwendung von multitemporalen Daten und interferometrische Auswertungen brachten in den letzten Jahren die größten Fortschritte bei Wald- u Vegetationskartierungen.

Aus den Radardaten wurde ein Waldkarte für das Untersuchungsgebiet in Zentralsibirien produziert, da dort für große Gebiete aktuelle Informationen über den Zustand des Waldes fehlen. Die Auswertung der Radardaten ermöglichte die Unterscheidung von vier Klassen nach stehendem Holzvorrat innerhalb des Waldes (≤ 20 m³/ha, 20-50 m³/ha, 50-80 m³/ha, > 80 m³/ha) und weist zudem die Landbedeckungsklassen Wasser und Nicht-Waldflächen aus.

Eine fortlaufende Überwachung dieser Wälder ist notwendig, da die Ökosysteme der Taiga sehr labil und durch ihr langsames Wachstum anfällig für Degradation, ausgelöst z.B. durch unangepasste Nutzung, Waldbrände oder Insektenkalamitäten, sind.

Die Information über den Stand und die Veränderungen im Holzvolumen (Biomasse) und der Baumartenzusammensetzung bzw. Nutzungen und Waldzerstörungen sind allerdings nicht nur als Planungsgrundlage für eine nachhaltige Forstwirtschaft im engeren Sinne bedeutend.

Kapitel 1: Einleitung

beeinflussen Waldbewirtschaftung und Waldflächenveränderungen die Erfüllung der Verpflichtungen zur Reduktion von Treibhausgasemissionen (Kapitel 2).

Die Datengrundlage zur vorliegenden Arbeit wurde von der IIASA (International Institute for Applied Systems Analysis), einem Projektpartner im EU-Projekt SIBERIA, zur Verfügung gestellt.

1.2 Aufgabenstellung

Das Ziel der vorliegenden Arbeit war die Klassifizierung von Waldbeständen nach Holzvorrat und Baumartenzusammensetzung aus Landsat-7-Daten.

Die Fragestellung ergab sich aus dem Klassifikationsergebnis des SIBERIA-Projektes, welches durch Auswertung von Radar-Daten Waldgebiete in vier Klassen nach stehendem Holzvorrat einordnen konnte. Es sollte untersucht werden, inwieweit eine Verbesserung dieses Klassifizierungsergebnisses mit optischen Satellitendaten möglich ist bzw. welche Klasseneinteilung Landsat 7-Daten erlauben und insbesondere, ob Differenzierungen innerhalb der nach oben offenen Klasse >80 m³/ha möglich sind.

Eine Unterscheidung von Waldbeständen nach Baumartenzusammensetzung, Bestandesvolumen, aber auch nach weiteren Bestandesparametern wie Alter oder Überschirmungsgrad aus Landsat-Daten wurde bereits in verschiedenen Untersuchungen erfolgreich durchgeführt (Kapitel 5). Die Eignung von Landsat-Daten für die Durchführung von Großrauminventuren wurde aufgezeigt, wobei nicht nur verschiedene Waldtypen unterschieden werden konnten, sondern auch quantitative Aussagen über Holzvorrat oder andere waldbbezogene Parameter gemacht wurden. Satellitendaten können als Hilfsvariablen (mehrphasige Inventurkonzepte) genutzt werden, oder ihre Reflexionswerte
können zu einer direkten Schätzung der entsprechenden Bestandesparameter verwendet werden.

Auf die Integration des panchromatischen Kanals (ETM 8), der auf Landsat 7 zum ersten Mal zur Verfügung stand, wurde besonderer Wert gelegt. Seine Aussagekraft bezüglich Holzvorrat und Baumart wurde untersucht, ebenso sein Einfluss auf die Textur von Beständen, da er eine höhere geometrische Auflösung (15 m x 15 m) als die übrigen Spektralkanäle besitzt.

1.3 Vorgehensweise

Von vier Testgebieten mit borealem Waldaubau in Zentralsibirien, ungefähr 100 km nördlich der Stadt Krasnojarsk gelegen, standen georeferenzierte Satellitenbildausschnitte des Sensors Enhanced Thematic Mapper+ (ETM+) von Landsat-7 sowie ein GIS-Datensatz mit den Referenzdaten zur Verfügung.

Der Datensatz der Forstinventur enthielt für die vier Testflächen, die zwischen 21.000 ha und 29.000 ha umfassen, auf Bestandesebene (durchschnittliche Größe der Inventurkarten zwischen 17 ha und 48 ha) alle forstlich relevanten Parameter. Die Referenzdaten wurden den Erfordernissen der Satellitenbildauswertung angepasst sowie auf Aktualität und geometrische Übereinstimmung mit den Landsat-Daten geprüft, um unbrauchbare Inventurkarten auszusondern.

Im Zuge der Vorverarbeitung der Satellitenbildausschnitte wurde der panchromatische Kanal (der nicht in georeferenziert Form vorlag) aus den zwei Original-Landsat-Szenen hinzugefügt, eine radiometrische Korrektur und eine Berechnung von Kanalkombinationen, die als Vegetationsindizes dienen sollten, durchgeführt.

Voraussetzung für eine Auswertung anhand von Bildobjekten ist eine Bildsegmentierung (Abgrenzung homogener Bereiche). Zusätzlich zur Segmentierung, die exakt der Abgrenzung der Inventurkarten der Forstinventur folgte, um deren Attribute übernehmen zu können, wurde eine weitere Segmentierung auf niedriger Ebene durchgeführt. Diese
diente der Berechnung von Texturparametern. Es wurde auch versucht, weitere Objekteigenschaften dieser Ebene in der Klassifizierung zu nutzen.

2 Klimaschutz und Waldwirtschaft

2.1 Internationale Abkommen zum Klimaschutz

2.1.1 Die UN-Klimarahmenkonvention

2.1.2 Das Protokoll von Kyoto

Für den Bereich Forstwirtschaft sind vor allem die Artikel 2, 3, 6 und 12 von Interesse, wobei der zentrale, aber auch umstrittenste und komplizierteste Teil des Abkommens Artikel 3 ist.

Artikel 3, Absatz 4 eröffnet in zukünftigen Verpflichtungszeiträumen die Möglichkeit, zusätzliche land- und forstwirtschaftliche Tätigkeiten (z.B. nachhaltige Waldbewirtschaftungsmethoden, Waldschutzmaßnahmen oder unmittelbar vom Menschen verursachte Landnutzungsänderungen) zur Erfüllung der nationalen Emissionsverpflichtungen heranzuziehen (UNFCCC 1997).

Artikel 6 (Gemeinsame Umsetzung, Joint Implementation) gestattet die Übertragung von „Emissionsreduktionseinheiten“ aus Projekten, die einzelne Annex-1-Länder zur Reduktion der Treibhausgasemissionen oder zur Förderung der Absorption durch Senken gemeinsam durchführen.

*Ein System, das mehr Kohlenstoff absorbiert als es abgibt, wird als Senke bezeichnet.

2.1.3 Die Ausgestaltung des Protokolls von Kyoto

Die Artikel 6 und 12 sowie der Emissionshandel (Artikel 17) zählen zu den sogenannten „Kyoto-Mechanismen“. Vor einer Ratifizierung des Protokolls warteten alle wichtigen Industrieländer den Ausgang der Verhandlungen zur konkreten Ausgestaltung dieser Flexibilitätsinstrumente ab (*OBERTHÜR UND OTT 2000, BÖSWALD ET AL. 2001a, ausführliche Information u.a. bei HEINRICHS 2001*).

Nach vier Jahren teils intensiver Verhandlungen legte die COP-6 bei ihrem zweiten Treffen in Bonn die Eckpunkte der politischen Einigung für die Implementierung des Kyoto-Protokolls fest. Zwar kündigte die USA (der größte CO₂-Emittent des Jahres 1990 mit 36,1 % der weltweiten Emissionsmenge) den Ausstieg aus dem Kyoto-Prozess an, dennoch wurden in Marrakesch (COP-7) die flexiblen Mechanismen endgültig festgelegt. Die Verhandlungspositionen von Japan und Russland hatten durch den Ausstieg der USA größeres Gewicht erhalten, was die Bedeutung der Wälder als anrechenbare Senken noch einmal steigerte (*BÖSWALD ET AL. 2001b, BMLFUW 2002*).

2.2 Der Wald im Kohlenstoffkreislauf

2.2.1 Der Wald als Kohlenstoffspeicher

Waldökosysteme sind die größten Kohlenstoffspeicher der terrestrischen Biosphäre. Global umfassen die in biotischen Systemen (oberirdische Biomasse und Boden bis 1 m Tiefe) vorhandenen Kohlenstoffvorräte ca. 2.500 Gt Kohlenstoff. Den weitaus größten Anteil daran haben mit 1.100 Gt Wälder, der bedeutendste Waldtyp sind boreale Wälder mit 560 Gt C (*IPCC 2000*).

Aktueller Stand der Ratifizierung: http://www.unfccc.int/resource/kpstats.pdf
Wälder entnehmen den Kohlenstoff in Form von CO$_2$ zur Gänze der Atmosphäre. Sie besitzen ein sehr hohes Senkenpotential, welches allerdings stark von Alter und Zustand des Waldes abhängt (OBERTHÜR UND OTT 2000). In ihrem derzeitigen Altersklassenaufbau und in ihrer derzeitigen Nutzung sind die Wälder Europas, der USA, Japans und Australiens eine Senke für CO$_2$ (KOHLMAIER 2001).

Nach JONAS ET AL. (1999) beruht die erhebliche Senkenwirkung der terrestrischen Ökosysteme der nördlichen Hemisphäre auf Veränderungen im globalen Kohlenstoffkreislauf, welche wiederum durch Klimaänderungen und den Anstieg der atmosphärischen CO$_2$-Konzentration hervorgerufen wurden.

Die Möglichkeiten der Forst- und Holzwirtschaft zur Treibhausgasreduktion sind erheblich und können genutzt werden, indem CO$_2$-Emissionen aus Wäldern verhindert, oder CO$_2$ aus der Atmosphäre rückgebunden wird. BÖSWALD ET AL. (2001a) führen hierzu spezielle Möglichkeiten an, die einzeln oder auch kombiniert einsetzbar sind:

- Walderhaltungsmaßnahmen,
- verbesserte Bewirtschaftungsmethoden,
- Aufforstungen,
- Vergrößerung der in Holzprodukten gespeicherten Kohlenstoffmenge,
- Substitution fossiler Brennstoffe,
- der gleichwertige Ersatz energieaufwendig herzustellender Materialien durch nachhaltig produziertes Holz.

Die Kohlenstoffmenge in einzelnen Waldbeständen kann aus Holzvolumen, Baumart und Umrechnungsfaktoren ermittelt werden. In der vorliegenden Diplomarbeit werden die kleinräumig variablen Faktoren Holzvorrat und Baumartenzusammensetzung aus Satellitendaten bestimmt.

Zur Ableitung des Kohlenstoffgehaltes der Waldbiomasse sei folgende Formel aus SCHÖNE UND SCHULTE (1999) beispielhaft angeführt:

\[C[t] = V \cdot [Efm \ o. R.] \cdot \sigma \cdot \frac{t [t]}{[Efm \ o. R.]} \cdot f_B \cdot f_C \cdot \frac{[t]}{[t]} \]

C : Kohlenstoffvorrat in Tonnen
V : Derbholz-Vorrat in Erntefestmetern ohne Rinde
\(\sigma \) : Raumdichte der Baumartengruppe
f$_B$: Expansionsfaktor für Umrechnung des Trockengewichts von V in Trockengewicht der Gesamtbiomasse
f$_C$: Faktor zur Umrechnung des Trockengewichtes der Biomasse in Kohlenstoff
Nach Berechnungen dieser Autoren speichern in Mitteleuropa hiebsreife Einzelbestände mittlerer Ertragsklasse je nach Baumart 140-250 t C/ha, Bestandesklassen bei üblichen Umtriebszeiten im Durchschnitt 80-120 t C/ha. Im Allgemeinen besteht die Trockensubstanz pflanzlicher Biomasse ungefähr zur Hälfte aus Kohlenstoff.

2.2.2 Fallstudie Russland

2.2.2.1 Methode und Bedeutung

Die Bedeutung dieser Fallstudie liegt auch darin, dass Russland ungefähr ein Fünftel der Wälder der Erde besitzt und so eine wichtige Rolle in der globalen Treibhausgas-Bilanz spielt.

2.2.2.2 Ergebnisse

Der Industriesektor und die terrestrischen Ökosysteme Russlands zusammen emittierten 1990 netto 527 Tg\(^*\) C. Die mögliche Schwankungsbreite beträgt allerdings 129 %, der wahre Wert liegt also irgendwo im Bereich zwischen –155 Tg C (wäre eine leichte Senke) und +1209 Tg C (deutliche Quelle). Die russischen Ökosysteme alleine betrachtet absorbieren 149 Tg C.

Im Jahr 2010 werden die terrestrischen Ökosysteme zwischen –272 und –283 Tg C netto aufnehmen, eine deutliche Steigerung bezogen auf 1990. Insgesamt jedoch wird Russland eine Nettoquelle bleiben, je nach Wirtschaftsentwicklung von 156 bis 385 Tg C. Das heißt, die Bilanz verbessert sich bis zum Jahr 2010 um 142 bis 372 Tg C

Weitere Unsicherheit birgt die unkontrollierbare Dynamik der terrestrischen Kohlenstoffbestände und- flüsse, welche unter anderem von der Witterung, dem Klima (der Klimaveränderung) und menschlichen oder natürlichen Störungen abhängt.
Störungen, die in borealen Waldökosystemen einen bedeutenden Einfluss entwickeln können, sind Waldbrände, Schädlings- und Krankheitsausbrüche, Nutzungen, Landnutzungsänderungen und in einigen Regionen Luftverschmutzung (SHVIDENKO UND NILSSON 2000).

Die Summe der Kohlenstoffbestände Russlands (Ökosysteme mitsamt Boden bis 1 m Tiefe) wurde für 1990 wurde mit 347,3 Gt C geschätzt, für das Jahr 2010 zwischen 350 und 351,1 Gt C. Der Anstieg wird durch einen Zuwachs an Vegetation hervorgerufen, der Unterschied beträgt jedoch nur ca. 1 %.

Die Tabelle 1 verdeutlicht die Bedeutung des Waldes als Kohlenstoffspeicher terrestrischer Ökosysteme.

Auch bei der Dichte an Kohlenstoff liegt der Wald mit 4,3 kg C/m² deutlich vor anderen Landbedeckungsklassen (landwirtschaftliche Flächen besitzen im Durchschnitt z.B. 0,47 kg C/m²), nur im Boden findet sich mit 18,5 kg C/m² eine höhere Konzentration.

\(^*\)1 Tg: 1 Teragramm (=1Mio t)
Kapitel 2: Klimaschutz und Waldwirtschaft

<table>
<thead>
<tr>
<th>Teilsystem</th>
<th>Phytomasse [Tg]</th>
<th>Kohlenstoff [Tg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boden (0-1m Tiefe)</td>
<td></td>
<td>292.868</td>
</tr>
<tr>
<td>Wälder</td>
<td>66.450</td>
<td>32.862</td>
</tr>
<tr>
<td>Tote Vegetation im Boden</td>
<td></td>
<td>8.842</td>
</tr>
<tr>
<td>Totholz</td>
<td></td>
<td>4.956</td>
</tr>
<tr>
<td>Grasland und Gebüsch</td>
<td>7.606</td>
<td>3.494</td>
</tr>
<tr>
<td>Feuchtgebiete</td>
<td>5.556</td>
<td>2.603</td>
</tr>
<tr>
<td>Landwirtschaftliche Flächen</td>
<td>2.187</td>
<td>987</td>
</tr>
<tr>
<td>Holzprodukte</td>
<td></td>
<td>726</td>
</tr>
<tr>
<td>Summe</td>
<td></td>
<td>347.338</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Landkategorie</th>
<th>NPP [Tg C/Jahr]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald</td>
<td>1707,3</td>
</tr>
<tr>
<td>Grasland und Gebüsch</td>
<td>1201,7</td>
</tr>
<tr>
<td>Landwirtschaftliche Flächen</td>
<td>957,2</td>
</tr>
<tr>
<td>Feuchtgebiete</td>
<td>487,2</td>
</tr>
<tr>
<td>Summe</td>
<td>4353,4</td>
</tr>
</tbody>
</table>

Tabelle 2: NPP ausgewählter Landbedeckungsklassen (aus NILSSON ET AL. 2000)

Auch bei den Kohlenstoff-Flüssen zwischen Biosphäre und Atmosphäre ist der Wald dominant. Als Beispiel zeigt **Tabelle 2** die Aufnahme von CO₂, dargestellt durch die Nettprimärproduktion (NPP).

2.3 Der Beitrag der Fernerkundung

Im Wesentlichen soll Fernerkundung dazu beitragen, „kohlenstoffrelevante“ Ökosysteme und deren Dynamik zu charakterisieren. Fernerkundungsdaten können Ungenauigkeiten in der Beschreibung der Systemen vermindern und die Quantifizierung der Bestände optimieren.

Die Schwierigkeit besteht darin, geringfügige Veränderungen in Kohlenstoffbeständen messen zu müssen (Kyoto-Ziele), während die Unsicherheit in der Erfassung der Bestandsgrößen und Flüsse zu den Vergleichszeitpunkten unverhältnismäßig hoch ist (**Kapitel 2.2.2.2**).

- bestehenden Daten fehlen einheitliche Definitionen und eine vergleichbare Klassifikation;
- der Bedarf an Daten für FCA ist enorm und die konventionelle Datenerhebung teuer;
- die vorhandenen Daten besitzen Probleme hinsichtlich räumlicher und zeitlicher Skalierung;
- die Vollständigkeit oder Folgerichtigkeit in der Ansprache des Systems sind nicht gegeben;
- man benötigt langfristige Datenreihen, um verschiedene Komponenten des FCA abzudecken;
- die Dynamik von Störungen kann zur Zeit kaum effizient beschrieben werden;
- Daten sind auf einige wichtige ökologische Prozesse beschränkt.

Bei der Verwendung von Daten aus verschiedenen Quellen geht es vor allem um die Frage, wie Fernerkundung die Information der zur Zeit wenig verwendeten Punktdaten erweitern kann.

Aus mit Fernerkundungsmethoden direkt ermittelbaren Variablen wie Biomasse, Landbedeckungsklasse oder Luft- und Bodentemperatur werden Eingangsgrößen (LAI, Bodentyp, Anteil photosynthetisch aktiver Strahlung) für Modelle bestimmt. Zustandsgrößen (wie NPP oder die durch Waldbrände freigesetzte Kohlenstoffmenge) der modellierten Prozesse gehen schließlich in die Berechnung der Kohlenstoffbilanzierungen ein.

3 Satellitenfernerkundung

Der Begriff „Fernerkundung“ entstand aus der sinngemäßen Übersetzung des in den USA in den 60er Jahren geprägten Bergriffs „remote sensing“. Ursprünglich auf Informationsgewinnung aus dem Weltraum mit Satelliten beschränkt, wird er heute weiter gefasst und bezeichnet allgemein Messverfahren, die es erlauben, aus größeren Entfernungen berührungsfrei Informationen über Art und Eigenschaft von Objekten zu erhalten.

Für unbemannte Satelliten ist die Übermittlung von Photographien zum Boden umständlich. Erst zeilenweise abtastende Systeme (Scanner) verbesserten die nachrichtentechnische Übertragung so, dass eine systematische Erdbeobachtung aus dem All möglich wurde (KRAUS UND SCHNEIDER 1988, LILLESAND UND KIEFER 2000).

3.1 Das Landsat-Programm

3.1.1 Überblick

Bei diesen Missionen wurden fünf unterschiedliche Typen von Sensoren in unterschiedlichen Kombinationen eingesetzt. Es sind dies RBV-Kameras (Return Beam Vidicon), die Abtaster MSS (Multispectral Scanner), TM (Thematic Mapper) sowie dessen Weiterentwicklungen ETM und ETM+ (Enhanced Thematic Mapper Plus)(LILLESAND UND KIEFER 2000).
Kapitel 3: Satellitenfernerkundung

Tabelle 3

Tabelle 3 bietet einen Überblick über die sieben Satelliten mit ihren wichtigsten Bahnparametern und eingesetzten Sensoren:

<table>
<thead>
<tr>
<th>System</th>
<th>Einsatzdauer</th>
<th>Sensor(en)</th>
<th>Höhe [km]</th>
<th>Wiederholungszyklus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landsat 1</td>
<td>23.7.72 - 6.1.78</td>
<td>RBV, MSS</td>
<td>917</td>
<td>18 Tage</td>
</tr>
<tr>
<td>Landsat 2</td>
<td>22.1.75 - 25.2.82</td>
<td>RBV, MSS</td>
<td>917</td>
<td>18 Tage</td>
</tr>
<tr>
<td>Landsat 3</td>
<td>5.3.78 - 31.3.83</td>
<td>RBV, MSS</td>
<td>917</td>
<td>18 Tage</td>
</tr>
<tr>
<td>Landsat 4</td>
<td>16.7.82 - (8.93)*</td>
<td>MSS, TM</td>
<td>705</td>
<td>16 Tage</td>
</tr>
<tr>
<td>Landsat 5</td>
<td>1.3.84 -</td>
<td>MSS, TM</td>
<td>705</td>
<td>16 Tage</td>
</tr>
<tr>
<td>Landsat 6</td>
<td>5.10.93 - 5.10.93</td>
<td>ETM</td>
<td>705</td>
<td>16 Tage</td>
</tr>
<tr>
<td>Landsat 7</td>
<td>15.4.99 -</td>
<td>ETM+</td>
<td>705</td>
<td>16 Tage</td>
</tr>
</tbody>
</table>

*Landsat 4: Datenübertragung im August 1993 abgebrochen

Tabelle 3: Die Landsatsysteme im Überblick (aus IRISH 1998)

Die unterschiedliche geometrische und radiometrische Auflösung der eingesetzten Sensoren zeigt Tabelle 4:

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Kanalnummer</th>
<th>Spektralbereich [µm]</th>
<th>Auflösung am Boden [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBV</td>
<td>(1)</td>
<td>0,48 – 0,57</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>0,58 – 0,68</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>0,70 – 0,83</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>0,505 – 0,75</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>auf LS3: (1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSS</td>
<td>(1) *</td>
<td>0,5 – 0,6</td>
<td>79 82*</td>
</tr>
<tr>
<td></td>
<td>(2) *</td>
<td>0,6 – 0,7</td>
<td>79 82*</td>
</tr>
<tr>
<td></td>
<td>(3) *</td>
<td>0,7 – 0,8</td>
<td>79 82*</td>
</tr>
<tr>
<td></td>
<td>(4) *</td>
<td>0,8 – 1,1</td>
<td>79 82*</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>10,4 – 12,6**</td>
<td>240</td>
</tr>
<tr>
<td>TM</td>
<td>(1)</td>
<td>0,45 – 0,52</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>0,52 – 0,60</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>0,63 – 0,69</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>0,76 – 0,90</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>1,55 – 1,75</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>10,4 – 12,5</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>2,08 – 2,35</td>
<td>30</td>
</tr>
<tr>
<td>ETM+</td>
<td>(1)</td>
<td>0,45 – 0,52</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(2)</td>
<td>0,52 – 0,60</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(3)</td>
<td>0,63 – 0,69</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>0,76 – 0,90</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(5)</td>
<td>1,55 – 1,75</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(6)</td>
<td>10,4 – 12,5</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>2,08 – 2,35</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>(8)</td>
<td>0,50 – 0,90</td>
<td>15</td>
</tr>
</tbody>
</table>

*auf Landsat 4 und Landsat 5
**nur auf Landsat 3

Tabelle 4: Sensoren der Landsat-Satelliten (aus IRISH 1998)

3.1.2 Landsat 1, 2 und 3

An Bord von Landsat 1 und Landsat 2 befand sich ein identisches Fernerkundungssystem: eine RBV-Kamera mit drei und ein Multispektralabtasterbatter (MSS) mit vier Spektralkanälen.

Die Spektralbereiche der RBV-Kamera entsprachen grob denen eines Farbinfrarotfilms, die Bildelementgröße am Boden betrug 80 m. Drei Kameras nahmen zeitgleich den selben Bereich auf der Erdoberfläche auf. Die Bilder deckten eine Fläche von 185 km x 185 km ab und waren mit Réseaukreuzen versehen. Die Funktionsweise war im Wesentlichen die einer Fernsehkamera, die Übertragung der Bildsignale erfolgte analog.

Die Ausbeute dieser zwei Kamerasysteme war gering, erst auf Landsat 3 war es erfolgreicher. Dort waren zwei Kameras mit einem Bildformat, welches 98 km x 98 km entsprach, nebeneinander montiert. Die Kameras waren nur für einen Spektralbereich ausgelegt, dafür betrug die verbesserte Bildelementgröße 40 m.

Der zweite eingesetzte Sensor (MSS) war das erste globale Beobachtungssystem, das fähig war, multispektrale Daten in digitaler Form zu produzieren. Der Sensor MSS ist ein mechanischer Abtaster, der die Erdoberfläche über einen Wippspiegel in einem 185 km breiten Streifen scannt. Der Öffnungswinkel (auch IFOV: Instantaneous field of view) des Scanners beträgt 0,087 mrad; pro Kanal sind sechs Detektoren aktiv.

Die analog aufgenommenen Bildsignale wurden digitalisiert und konnten direkt oder nach Zwischenspeicherung auf Magnetband zu den Bodenstationen übertragen werden.

Im Archiv der Sensoren von Landsat 1 bis 3 befinden sich an die 1,3 Mio. Szenen. Auch wenn die Satelliten nicht mehr aktiv sind, besitzen ihre Daten als interessante Referenz und als wichtiges Archiv für Langzeitstudien immer noch große Bedeutung.

3.1.3 Landsat 4, 5

Wie ihre Vorgänger kreisen die Satelliten Landsat 4 und Landsat 5 in einer sich wiederholenden, sonnensynchronen, polnahen Umlaufbahn um die Erde. Die Nominalhöhe wurde gegenüber Landsat 1 bis 3 von 915 km auf 705 km vermindert, der Wiederholungszyklus von 18 auf 16 Tage verkürzt. Solange beide Satelliten einsatzbereit waren, wurde die selbe Stelle auf der Erdoberfläche sogar alle 8 Tage von einem der beiden Satelliten überflogen.

Die spektrale Auflösung wurde durch schmälere Wellenlängenbereiche und zusätzlich erschlossene Spektralbereiche verbessert. Es stehen sieben statt wie bisher fünf Kanäle zur Verfügung, deren Wellenlängenbereiche und Breite besser für Identifikation von Erdoberflächencharakteristika geeignet sind. Vor allem die Möglichkeit der Vegetationsunterscheidung verbesserte sich wesentlich.

Die radiometrische Auflösung der Bildelemente beträgt 256 Stufen (8 bit) gegenüber den 64 Stufen (6 bit) des MSS-Sensors.

Ebenso wurde, durch die niedrigere Umlaufbahn und Sensorweiterentwicklung (Öffnungswinkel 0,0425 mrad), die geometrische Auflösung verbessert. Die Verkleinerung der Bildelemente am Boden von 80 m auf 30 m vermittelt dem Beobachter den Eindruck, dass die Brillanz sogar um das 7-fache zugenommen hat (\(80^2/30^2 \approx 7\)).

Der Spiegel des TM wippt in einem Bereich von 16,5 gon, wobei die Detektoren in beiden Richtungen aktiv sind. Die dadurch mögliche langsamere Spiegelbewegung wirkt zusammen mit der Vergrößerung der Detektorenanzahl pro Kanal günstig auf das Signal/Rauschverhältnis.

Die Datenübertragung erfolgt über zwei geostationäre Relais-Satelliten (TDRS, Tracking and Data Relay Satellites). Die amerikanischen Bodenstationen sind zusätzlich über den Satellit DOMSAT (Domestic Satellite) zusammengeschlossen, allerdings gibt es keine Möglichkeit, die Daten an Bord zwischenzuspeichern.
Kapitel 3: Satellitenfernerkundung

<table>
<thead>
<tr>
<th>Kanal</th>
<th>Wellenlängenbereich [µm]</th>
<th>Spektralbereich</th>
<th>Merkmale und Hauptanwendungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,45-0,52</td>
<td>Blau</td>
<td>Besitzt Eindringungsvermögen in Wasser, für Kartierung küstennaher Gewässer, Trennung Boden/ Vegetation, Wald/Nichtwald, Kartierung von Waldtypen; besitzt allerdings starke Steulichtanteile</td>
</tr>
<tr>
<td>2</td>
<td>0,52-0,60</td>
<td>Grün</td>
<td>Ausgelegt auf Reflexionsmaximum der Vegetation; für Vegetationsunterscheidungen, Trennung Wald von Nichtwald, für Vitalitätsbeurteilung.</td>
</tr>
<tr>
<td>3</td>
<td>0,63-0,69</td>
<td>Rot</td>
<td>Misst in den Absorptionsbereichen des Chlorophylls, für die Differenzierung von Pflanzenarten.</td>
</tr>
<tr>
<td>4</td>
<td>0,76-0,90</td>
<td>Nahes Infrarot</td>
<td>Bestimmung von Vegetationstypen, Vitalität, Biomasse, Alter von Waldbeständen; Abrenzung von Wasserflächen; Bodenfeuchtebestimmung.</td>
</tr>
<tr>
<td>5</td>
<td>1,55-1,75</td>
<td>Mittleres Infrarot</td>
<td>Indikator für Wassergehalt von Pflanzen (Wasserstress) und Bodenfeuchte; für Unterscheidung von Schnee und Wolken, Vegetationstypen; geologische Kartierungen.</td>
</tr>
<tr>
<td>6*</td>
<td>10,4-12,5</td>
<td>Thermalstrahlung</td>
<td>Vegetationsstressanalyse, Bestimmung Bodenfeuchte, Thermalkartierungen; besitzt verringertes geometrisches Auflösungsvermögen.</td>
</tr>
<tr>
<td>7*</td>
<td>2,08-2,35</td>
<td>Mittleres Infrarot</td>
<td>Unterscheidung von Mineralen und Gesteinen; geologische und bodenkundliche Anwendungen; sensitiv für den Pflanzenwassergehalt</td>
</tr>
</tbody>
</table>

*Die Kanäle 6 und 7 liegen nicht in spektraler Reihenfolge, da Kanal 7 erst sehr spät zur ursprünglichen Planung dazugekommen ist.

Tabelle 5: Hauptanwendungen der Spektralkanäle des Thematic Mapper (aus LILLESAND UND KIEFER (2000), ergänzt durch SCHARDT (1990))

3.1.4 Landsat 6, 7

Nachdem der Start von Landsat 6 mit dem Sensor ETM an Bord im Oktober 1993 fehlgeschlagen war, musste Landsat 5 mit dem Thematic Mapper die Zeit bis zum Start von Landsat 7 im April 1999 überbrücken.

Kapitel 3: Satellitenfernerkundung

Die Umlaufbahn und der Wiederholungszyklus von Landsat 7 entsprechen denen der Vorgänger Landsat 4 und 5 - schließlich ist es auch eines der Hauptziele von Landsat 7, die Datenkontinuität zu den Vorgängermissionen zu sichern. Er besitzt eine kreisförmige, sonnensynchrone, polnahe Umlaufbahn, die um 98,2° zum Äquator geneigt ist (Inklination). Die nominale Flughöhe am Äquator beträgt 705 km. Für einen Umlauf benötigt der Satellit ca. 99 Minuten, das heißt pro Tag werden mehr als 14 Flugstreifen aufgenommen. Der Satellit fliegt auf der Tagseite der Erdkugel von Norden nach Süden, wobei jeder Orbit nach 16 Tagen auf gleicher Spur und zeitlichem Verlauf wiederholt wird, d.h. die Erde kann innerhalb dieser Zeit zwischen 81° nördlicher und südlicher Breite vollständig aufgenommen werden.

Den Umlaufbahnen entsprechen am Boden Grundstreifen (Pfaden), die in einem weltweiten Referenzsystem (WRS: Worldwide Reference System) beschrieben werden. Bei 233 Bodenspuren unterteilt das WRS die gesamte Erdoberfläche in 28.892 Szenen, die durch den Spalten- und Zeilenindex angesprochen werden können. Das WRS ist dasselbe wie für Landsat 5, der Überflug von Landsat 7 ist um 8 Tage versetzt. Der im Westen direkt angrenzende Flugstreifen wird 7 Tage später überfllogen. Die Querüberdeckung der Aufnahmestreifen beträgt am Äquator 7,3 % und nimmt gegen die Pole hin zu, da die Breite des Aufnahmestreifens konstant bleibt. So beträgt sie bei 40° nördlicher Breite (Madrid) schon 29 % und bei 50° (Prag) 40,4 %.

Da alle Punkte auf einer gegebenen Breite zur selben Ortszeit überflogen werden, können tageszeitliche, durch den Sonnenstand verursachte Beleuchtungsschwankungen ausgeschaltet werden. Was bleibt, ist die jahreszeitliche Schwankung des Sonnenstandes, die durch Bahnparameter nicht eliminiert werden kann. Für Landsat 7 ist die nominale Sonnenzeit beim Überflug über den Äquator 10:00 Uhr, d.h. die nördlichen mittleren Breiten werden noch früher am Vormittag aufgenommen. Diese Aufnahmezeiten wurden gewählt, um eine möglichst klare Atmosphäre vorzufinden und in den Tropen noch vor der täglichen Wolkenbildung Aufnahmen machen zu können.

Als Sensor besitzt Landsat 7 den Enhanced Thematic Mapper Plus (ETM+), eine Weiterentwicklung des Thematic Mapper. Die wesentlichen Änderungen sind ein zusätzlicher panchromatischer Kanal 8 mit einer Bodenauflösung von 15 m und einem Spektralbereich von 0,5 µm – 0,9 µm, sowie die verbesserte räumlicher Auflösung des thermischen Kanals 6 auf 60 m. An Bord stehen drei Vorrichtungen zur radiometrischen Kalibrierung zur Verfügung, sodass eine absolute radiometrische Kalibrierung der Daten innerhalb einer Genauigkeit von ± 5 % gewährleistet ist.

Beim Sensor ETM+ kann die „Empfindlichkeit“ eines jeden Kanals vom Boden aus gesteuert werden. Diese Einstellungen dienen einer Maximierung der radiometrischen Auflösung, die 256 Grauwerte produzieren kann, ohne dass es zu einer Sättigung der Detektoren kommt. Die Empfindlichkeit wird, was auch als Steigung der Kalibrierungsfunktion aufzufassen ist, für eine gegebene Szene an die erwartete Oberflächenhelligkeit (abhängig von Landbedeckungsklasse und Jahreszeit) angepasst (Abbildung 2). Die Abbildung 2 zeigt auch, wie durch eine Transformationsfunktion (mit
Hilfe der Kalibrierungsparameter des Sensors) die Grauwerte der Landsat-Kanäle in Werte spektraler Strahldichte umgerechnet werden können.

Abbildung 2: Prinzip der radiometrischen Kalibrierung (aus IRISH (1998), verändert)

ETM+ produziert Daten in drei verschiedenen geometrischen Auflösungen. Folglich besitzt er pro Kanal eine unterschiedliche Anzahl von Detektoren, nämlich 32 für den Kanal 8, 16 für die Kanäle 1-5 und 7, und 8 für Kanal 6. Bei jedem Durchlauf (Scan) des Sensors, der auf der Erdoberfläche eine Breite von 185 km abdeckt, werden in Flugrichtung 480 m dazugewonnen.

Der eigentlich durchgehend aufgenommene Grundstreifen wird so unterteilt, dass eine Standardszene ca. 185 km (Streifenbreite) x 180 km (in Flugrichtung) abdeckt. Genau genommen ist das aufgenommene Bild annähernd ein Parallelogramm, da sich während des Überfluges die Erde unter dem Satellit weiter dreht.

Die weltweite Abdeckung mit Satellitenbildern wird durch eine langfristige Strategie zur optimalen Bildbeschaffung, den *Long-Term Acquisition Plan* gesteuert, der dafür sorgen soll, dass in regelmäßigen Abständen möglichst wolkenfreie Bilder von der gesamten Landoberfläche gewonnen werden.

3.1.5 Bedeutung der Landsat-Daten

Die Bedeutung der Landsat-Daten liegt darin, dass sie im Bereich zwischen Satelliten mit sehr kurzer Wiederholungsrate aber grober Auflösung und den hochauflösenden Sensoren wertvolle Informationen liefern.

Satelliten mit täglicher Wiederholungsraten wie die NOAA-Satelliten mit den AVHRR-Sensoren (Advanced Very High Resolution Radiometer) oder beispielsweise der Sensor MODIS (Moderate Resolution Imaging Spectro-Radiometer) des EOS (Earth Observing System), der im 2-Tageswiederholungszyklus die ganze Erde aufnimmt, besitzen eine räumliche Auflösung von nur ca. 1 km.

Andererseits können hochauflösende Satelliten pro Überflug nur einen schmalen Streifen der Erdoberfläche aufnehmen, besitzen weniger Spektralkanäle und keine so exakte absolute radiometrische Kalibrierung wie ETM+.

Weitere Vorteile sind die Kontinuität der Aufzeichnungen und das umfangreiche Archiv der Landsat-Missionen (für Untersuchungen von Langzeitveränderungen der spektralen Reflexion), seine multispektrale Aufnahmekapazität mit absoluter radiometrischer Kalibrierung, die schnell verfügbaren und eher preiswerten Daten und die bereits vorhandenen Erfahrungen und Ergebnisse mit thematischen Auswertungen.

3.2 Ausgewählte Sensoren im optischen Spektralbereich

3.2.1 SPOT und IRS

Neben den Landsat-Bildern erreichten vor allem die Daten der französischen Satelliten SPOT (Systeme Pour l’Observation de la Terre) weite Verbreitung in der zivilen Erdbeobachtung.

SPOT 1 wurde 1986 in seine Umlaufbahn gebracht. Das Sensorsystem wurde mit HRV (High Resolution Visible) bezeichnet und konnte in einem multispektralen Modus (XS-Modus) mit drei Spektralkanälen oder einem panchromatischen Modus (P-Modus:...
Kapitel 3: Satellitenfernerkundung

Spektralbereich 0,51 – 0,73 µm) betrieben werden. Die geometrische Auflösung betrug im XS-Modus 20 m bzw. 10 m im P-Modus. Zusätzlich zur gegenüber Landsat TM leicht besseren geometrischen Auflösung, konnte das HRV-System seine Blickrichtung quer zur Flugrichtung schwenken, sodass es innerhalb des Wiederholungszykluses von 26 Tagen möglich war, einen beliebigen Punkt am Äquator 7mal zu beobachten. Diese Eigenschaft macht es auch möglich, Stereobilder herzustellen.

Daneben besitzen auch die indischen IRS-Satelliten (Indian Remote Sensing), die seit 1988 aktiv sind, vergleichbare Konfiguration. Vor allem die Bodenauflosung von IRS-1C (1995) und IRS-1D (1997) mit 23 m in vier Spektralkanälen einschließlich des nahen Infrarot und nur 5,8 m im panchromatischen Kanal (0,5 - 0,75 µm) machten und machen sie auch für forstliche Anwendungen in Mitteleuropa interessant (COENRADIE ET AL. 1999).

Bei einem Wiederholungszyklus von 24 Tagen besitzen die Sensoren LISS (Linear Imaging Self Scanning Sensor) ebenfalls die Möglichkeit, die Aufnahmerichtung seitwärts zu verschwenken.

Auch andere Länder (Russland, Japan) starteten ähnliche Satellitenprogramme. Bemannte Weltraummissionen (Space Shuttle) führten ebenfalls vergleichbare Sensoren mit (LILLESAND UND KIEFER 2000).

3.2.2 Neue Entwicklungen

Seit kurzer Zeit (Start von IKONOS Sept. 1999) stehen nun auch für zivile Anwender sogenannte hochauflösende Satelliten mit einer geometrischen Auflösung von unter 2 m zur Verfügung. Tabelle 6 bietet eine kurze Beschreibung aktiver und geplanter Satellitensysteme.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Nominalhöhe [km]</th>
<th>Aufnahmestreifenbreite [km]</th>
<th>Auflösung [m]</th>
<th>Start</th>
</tr>
</thead>
<tbody>
<tr>
<td>QuickBird</td>
<td>450</td>
<td>16,5</td>
<td>0,6</td>
<td>2001</td>
</tr>
<tr>
<td>IKONOS</td>
<td>680</td>
<td>11</td>
<td>1</td>
<td>1999</td>
</tr>
<tr>
<td>EROS-A1</td>
<td>480</td>
<td>12,5</td>
<td>1,8</td>
<td>2000</td>
</tr>
<tr>
<td>OrbView3</td>
<td>460</td>
<td>8</td>
<td>1*</td>
<td></td>
</tr>
<tr>
<td>EROS-B</td>
<td>600**</td>
<td>16</td>
<td>1**</td>
<td>*</td>
</tr>
</tbody>
</table>

*geplant
**Flughöhe noch nicht fixiert

Tabelle 6: Hochauflösende Sensoren (aus PETRIE 2002)

Als Auflösung ist die Bildelementgröße im panchromatischen Kanal angegeben, daneben besitzen IKONOS und QuickBild auch multispektrale Kanäle mit einer Auflösung von 2,5 m (QuickBird) bzw. 4 m (IKONOS). Die hier genannten Sensoren besitzen alle ein sowohl
Kapitel 3: Satellitenfernerkundung

seitwärts als auch in Flugrichtung schwenkbares Blickfeld und ermöglichen somit Stereoauswertungen.

3.2.3 Photographiche Systeme

3.3 Radarfernerkundung

3.3.1 Übersicht

Die wesentlichen Vorteile bzw. Unterschiede der Radarfernerkundung, die im Bereich der Mikrowellen mit Wellenlängen von etwa 1 mm bis 1 m operiert, zur Fernerkundung im Bereich des sichtbaren Lichts und des nahen Infrarot sind:

- Wetterunabhängigkeit: Im Gegensatz zu Wellenlängen im sichtbaren und nahen Infrarotbereich können Mikrowellen Wolken und Nebel fast ungehindert durchdringen.
- Aktives System: Radarsysteme senden aktiv Radarimpulse aus und sind daher von der Sonnenstrahlung unabhängig und können Tag und Nacht Daten liefern.
- Objek tinformation: Radar kann Information über elektrische Eigenschaften (Wassergehalt) und die Struktur des rückstreuenden Volumens liefern.

Die wichtigsten Gelände eigenschaften bzw. Objektparameter, welche die SAR-Rück streuung beeinflussen, sind Oberflächenrauigkeit, Dielektrizitätskonstante (Feuchtigkeit, Material) und struktureller Aufbau (auch Ausrichtung des Objekts). Für eine Interpretation müssen sie allerdings in Kombination mit den Sensorparametern Frequenz, Polarisation und Blickwinkel gesehen werden.

Bezeichnung	Wellenlänge	Frequenz
X-Band | 24-37,5 mm | 12,5-8 GHz
C-Band | 37,5-75 mm | 8-4 GHz
L-Band | 15-30 cm | 2-1 GHz

Tabelle 7: Die wichtigsten Radarbänder mit ihrem Frequenz- und Wellenlängenbereich

Generell dringen längere Wellen tiefer in Materialien ein und liefern somit Informationen aus tieferen Schichten, während kürzere Wellenlängen vorwiegend Oberflächeninformationen beinhalten. Eine höhere geometrische Auflösung wird mit kürzeren Wellenlängen erreicht.

Radarsysteme können die elektromagnetische Energie entweder horizontal (H) oder vertikal (V) polarisiert abstrahlen bzw. empfangen, was vier Polarisationskombinationen möglich macht. Wenn die gesendeten und die empfangenen Radarwellen die gleiche Polarisation besitzen (VV oder HH), wird eine Aufnahme als gleichpolarisiert (like-polarisation) bezeichnet. Bei einer kreuzpolarisierten (cross-polarisation) Aufnahme sind die ausgesendeten und empfangenen Wellen unterschiedlich polarisiert (HV oder VH).

(entweder zwei Antennen an einer Plattform oder zwei Überflüge innerhalb kurzer Zeit mit geringem Bahnunterschied) rechnerisch überlagert.

3.3.2 Radarsatelliten

Der erste zu geowissenschaftlichen Zwecken eingesetzte Radarsatellit war der 1978 gestartete SEASAT-1. Er war mit einem L-Band SAR-System mit HH-Polarisation ausgerüstet und, als Gegenstück zu Landsat 1, vor allem für ozeanographische Fragestellungen ausgelegt.

Die Radarsatelliten aus [Tabelle 8](#) stellten eine neue Generation dar, welche Radardaten aus dem All von experimentellen zu operationellen Anwendungen führte.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ERS-1</th>
<th>ERS-2</th>
<th>JERS-1</th>
<th>RADARSAT-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe [km]</td>
<td>785</td>
<td>785</td>
<td>568</td>
<td>798</td>
</tr>
<tr>
<td>Radarband</td>
<td>C-Band</td>
<td>C-Band</td>
<td>L-Band</td>
<td>C-Band</td>
</tr>
<tr>
<td>Polarisation</td>
<td>VV</td>
<td>VV</td>
<td>HH</td>
<td>HH</td>
</tr>
<tr>
<td>Blickwinkel</td>
<td>23°</td>
<td>23°</td>
<td>35°</td>
<td>10° - 60°</td>
</tr>
<tr>
<td>Aufnahmestreifenbreite [km]</td>
<td>100</td>
<td>100</td>
<td>75</td>
<td>45 - 500</td>
</tr>
<tr>
<td>Geometrische Auflösung [m]</td>
<td>30</td>
<td>30</td>
<td>18</td>
<td>8 - 100</td>
</tr>
</tbody>
</table>

[Tabelle 8: Parameter der wichtigsten SAR-Systeme (ohne ENVISAT) der letzten Jahre. (aus LILLESAND UND KIEFER 2000)](#)

Ihr Wiederholungszyklus war im Bereich von 16 Tagen bis 35 Tagen veränderbar. In der Grundkonfiguration wurde die selbe Stelle auf der Erdoberfläche alle 16 bis 18 Tage abwechselnd von einem der beiden Satelliten überflogen. Abschnittsweise jedoch, jeweils über mehrere Monate hinweg, erfolgte ein sogenannter Tandem-Betrieb. Dabei bewegten
sich beide Satelliten in einer Art Formationsflug um die Erde und folgten einander im Abstand von nur einem Tag auf leicht unterschiedlichen Bahnen. Hauptsächlich dieser Einsatz von ERS-1 und ERS-2 war Grundlage für die Anwendung interferometrischer Auswertungen.

3.3.3 Anwendungsbereich Forstwirtschaft

Die Möglichkeit, Waldtypen oder bestimmte Bestandesformen im Radarbildern unterscheiden zu können, ist im X-Band am größten und nimmt über C-Band zum L-Band hin ab. In Radarbildern ist die Textur von Objekten bzw. Landbedeckungsklassen oft das entscheidende Merkmal; Texturunterschiede sind für die Trennung von Wald und Nichtwald entscheidend (HILDEBRANDT 1996).

4 Reflexionsverhalten von Vegetation

Bevor die Strahlung der Sonne von der Geländeoberfläche reflektiert werden kann, muss sie die Atmosphäre durchlaufen. Ein Teil der elektromagnetischen Strahlung wird in der Atmosphäre absorbiert, ein anderer Teil gestreut. Streumechanismen sind die Rayleigh-Streuung, die stark wellenlängenabhängig ist und vor allem an Luftmolekülen stattfindet, die Mie-Streuung, die durch Aerosole hervorgerufen wird, und die nicht selektive Streuung, die vollkommen unabhängig von der Wellenlänge in Nebel und Wolken stattfindet.

Die Erfassung der Reflexion durch photographische Systeme ist beschränkt. Photographische Filme sind nur bis maximal 0,9 µm empfindlich, besitzen höchstens drei strahlungsempfindliche Schichten und bieten keine streng quantitative Strahlungsmessung. Elektrooptische Sensoren besitzen diese Beschränkungen nicht und können in vielen, auch sehr schmalen Spektralbereichen messen.

4.1 Reflexionsverhalten von Blattorganen

Grüne und gesunde Blattorgane besitzen ein sehr typisches spektrales Reflexionsvermögen. Es können die drei Spektralbereiche sichtbares Licht, nahes Infrarot und mittleres Infrarot unterschieden werden, in denen jeweils unterschiedliche Faktoren für das Reflexionsverhalten maßgeblich sind (Abbildung 4). Neben der Beschreibung der Wirkungsweise dieser drei Hauptfaktoren Pigmentgehalt, Blatt- und Zellstruktur sowie Wassergehalt soll auch jeweils kurz gezeigt werden, wie bestimmte Einflüsse das typische Reflexionsverhalten vitaler Vegetation modifizieren.
Kapitel 4: Reflexionsverhalten von Vegetation

4.1.1 Spektralbereich sichtbares Licht

Der typische Verlauf der Reflexion von Vegetation im sichtbaren Wellenlängenbereich (0,4 µm bis 0,7 µm) ist durch eine starke Absorption durch Blattpigmente (Chlorophylle, α-Karotin, Xanthophyll, Phytocyan) charakterisiert. Im Bereich des sichtbaren Lichts werden für die meisten Pflanzen zwischen 70 % und 95 % der eingestrahlten Energie absorbiert. Die Absorptionsmaxima liegen im blauen und roten Bereich des Spektrums, im grünen (nur Chlorophylle absorbieren hier geringfügig) befindet sich ein relatives Maximum der Reflexion und Transmission, welches die Blätter dem menschlichen Auge grün erscheinen lässt. Außer von den Blattpigmenten wird die Reflexion zu einem kleinen Teil auch von Oberflächeneigenschaften wie Blattgröße, Rauhigkeit der Blattoberflächen, Behaarung, eventuell vorhandener Wachsschichten oder Verschmutzung beeinflusst.

4.1.2 Spektralbereich nahes Infrarot

Der Spektralbereich des nahen Infrarot ist für die Fernerkundung von besonderem Interesse, da dort die Unterschiede zwischen Nadel- und Laubblättern bzw. zwischen gesunden und geschädigten Blättern der selben Pflanzenart besonders groß sind. Im Bereich des nahen Infrarot (0,7 µm bis 1,3 µm) weist die Reflexion vitaler Blätter und Nadeln ein breites Maximum auf, ebenso ist die Transmission in diesem Bereich besonders groß. Die Reflexionscharakteristik dieses Bereichs wird überwiegend durch die Zell- und
Gewebestruktur der Blattorgane bestimmt. Die spektralen Reflexionsgrade $\rho(\lambda)$ variieren mit Art und Zustand der Vegetation und liegen im Bereich zwischen 30 % und 70 %.

Bei einer Schädigung des Blattes, die mit einer Beeinträchtigung der Zellstruktur einhergeht, zeigt sich ein Absinken der Reflexion in nahen Infrarot. Auch Blattorgane unterschiedlich alter Bäume zeigen mit zunehmendem Alter wesentlich geringere Reflexion.

4.1.3 Spektralbereich mittleres Infrarot

Im Wellenlängenbereich zwischen 1,3 µm und 2,6 µm fällt die Reflexion der Blattorgane diskontinuierlich bis Werte unter 10 % ab. Die spektrale Reflexion wird vornehmlich vom Wassergehalt und von den starken Wasserabsorptionsbanden (bei 1,45 µm, 1,95 µm und 2,7 µm) bestimmt. Je höher der Wassergehalt, desto tiefer liegen die Reflexionswerte. Beim Austrocknen steigen die Werte insgesamt an, zusätzlich ebnet sich bei Wasserstress die Reflexionskurve mehr oder weniger ein (TUCKER 1980).

Im mittleren Infrarot liegen auch Spektralbereiche, in denen die Atmosphäre einen großen Anteil der Strahlung absorbiert. Messung ist daher in den Bereichen dazwischen, in den „atmosphärischen Fenstern“, nach welchen auch die Landsat-Kanäle des mittleren Infrarot ausgelegt sind, günstig (Abbildung 4).

4.2 Reflexionsverhalten von Waldbeständen

Einflussfaktoren an einem Individuum:
- Stellung und Größe der Blattorgane
- Aufbau des Sprosses, bzw. der Krone
- Phänologische Situation (Belaubungszustand)
- Dichte der Belaubung und damit das Verhältnis zwischen beleuchteten und beschatteten Blättern/Nadeln, anderen Pflanzenteilen und durchscheinendem Boden und Unterwuchs

Parameter eines Waldbestandes:
- Alter bzw. Alterszusammensetzung
- Zusammensetzung nach Arten und die Form der Vergesellschaftung
- Vertikale Gliederung
- Dichte der Bestockung und damit der Anteil der Reflexion von Boden und Bodenvegetation

Auf Grund all dieser Einflüsse reflektieren Bestände nur zwischen 40 % und 70 % der Reflexion eines einzelnen Blattes (KNIPLING 1970).

Die Reflexion der Globalstrahlung erfolgt bei natürlichen, rauen Oberflächen in der Regel anisotrop, das heißt in unterschiedliche Richtungen unterschiedlich stark. Vegetationsbedeckte Flächen reflektiert also in Abhängigkeit von der Rauhigkeit und Gestalt der Oberfläche, mehr oder weniger ausgeprägt vor- oder rückwärtsgerichtet. Die überwiegende Mehrzahl der Pflanzenbestände und Böden zeigt eine rückwärts (gegen die Stahlungsquelle) gerichtete Reflexion.

Die Kronendachstruktur spielt auch bei der Empfindlichkeit verschiedenartiger Bestände gegenüber einer Veränderung der Illumination eine entscheidende Rolle. So reagieren Buchenbestände bzw. junge Fichtenbestände aufgrund ihrer geringeren Oberflächenrauhigkeit empfindlicher auf Beleuchtungsunterschiede als alte Fichtenbestände. Die Grauwerte für glattere Oberflächen (Buchenbestände) steigen mit zunehmender Illumination stärker an als die der stärker strukturierten (Fichtenbestände). Dieser Einfluss zeigt sich im nahen und mittleren Infrarot am stärksten (SCHARDT 1990).

KENNEWG ET AL. (1989) stellten in älteren Fichtenbeständen bei der Analyse von Daten mit einer Auflösung von 1,25 m x 1,25 m fest, dass nur 9 % der Bildelemente ausschließlich auf beleuchtete Kronenteile entfielen. 46 % enthielten Reflexion von Waldboden oder

4.3 Spektrale Vegetationsindizes

Vegetationsindizes sind Parameter, die auf rechnerischer Kombination von Meßwerten aus mehreren Spektralkanälen basieren und einen einzelnen Wert ergeben, der die Vegetation charakterisieren bzw. Oberflächen mit lebender Vegetation von unbewachsener unterscheiden soll. Dabei wird die charakteristische spektrale Reflexion von lebender, grüner Vegetation und die sich daraus ergebende Signatur in multispektralen Fernerkundungsdaten ausgenutzt. Zum Beispiel reflektieren lebende Pflanzenbestände im nahen Infrarot deutlich mehr und im roten Spektralbereich fast durchwegs weniger als unbelebte Oberflächen. Die Kombination dieser beiden Messwerte wird bei der einfachsten Form eines Vegetationsindex, dem Ratio-Vegetationsindex (RVI) ausgenutzt:

\[RVI = \frac{\text{NIR}}{R} \]

Eine Vielzahl von Indizes wurde vorgeschlagen, erprobt und diskutiert. Im folgenden sei nur eine kurze Auswahl einiger Konzepte vorgestellt (Hildebrandt 1996). Einer der bekanntesten und häufig angewandten ist der Normalized Difference Vegetation Index:

\[NDVI = \frac{(\text{NIR} - R)}{(\text{NIR} + R)} \]

Er ist empfindlicher und für die Erkennung auch relativ spärlich aufkommender Vegetation besser geeignet als der RVI. Weiters wurde der NDVI oft in abgewandelter Form verwendet. Für eine Waldflächenerfassung in den Tropen bei starker atmosphärischer Störung schlugen Stibig

\[\text{Messwerte der einzelnen Spektralbereiche werden folgendermaßen abgekürzt: B: blau, G: grün, R: rot, NIR: nahes Infrarot, MIR: mittleres Infrarot} \]
Kapitel 4: Reflexionsverhalten von Vegetation

\[IND3 = \frac{(MIR - NIR)}{(MIR + NIR)} \]

 Auch Kanäle im sichtbaren Bereich wurden in Vegetationsindizes mit einbezogen, im *Differenz-Differenz-Vegetationsindex* (DD) sollen sie den Luftlichteinfluss vermindern.

\[DD = (2 \times NIR - R) - (G - B) \]

\[PVI = \sqrt{(S_R - V_R)^2 + (S_{NIR} - V_{NIR})^2} \]

\[S_R, S_{NIR} : \text{Bodenreflexion im roten bzw. nahen Infrarotbereich} \]
\[V_R, V_{NIR} : \text{Vegetationsreflexion im roten bzw. nahen Infrarotbereich} \]

5 Einsatz von Landsat-Daten in der Forstwirtschaft

5.1 Erste Anwendungen

5.1.1 Extensiv bewirtschaftete Wälder

Eines der Haupteinsatzgebiete der ersten Jahre waren die Tropenwaldregionen. Durch die Satellitenbilder konnte dort erstmals ein Überblick über die großen, schwer zugänglichen Waldgebiete gewonnen werden.

Auch in Indien wurde Anfang der 80er Jahre für die gesamte Landesfläche die Waldflächenabnahme anhand von MSS-Daten bestimmt. Auf Grundlage von Farbkompositen wurden auch hier die Daten vorwiegend visuell interpretiert.
Visuelle Auswertungen wurden erst allmählich durch automatische, computergestützte Klassifizierungen abgelöst. Auch als Satellitendaten der zweiten Generation, mit verbesserter Auflösung und zusätzlichen Spektralkanälen, zur Verfügung standen, überwog zu Beginn noch die visuelle Auswertung.

5.1.2 Globale Inventuren

5.2 Anwendungsbeispiele Mitteleuropa

5.2.1 Mehrphasige und nationale Waldinventuren

SCHADE (1980) entwickelte ein dreiphasiges Inventurverfahren für mitteleuropäische Verhältnisse, das ab 100.000 ha rentabel einsetzbar ist. Mit Hilfe von MSS-Daten konnte die Waldfläche, die Holzartenstruktur, und der durchschnittliche Gesamtzuwachs mit zufriedenstellender Genauigkeit bestimmt werden.

In Finnland wurde 1989 für die achte Aufnahmeperiode der nationalen Forstinventur das Konzept eines „Multi-Source National Forest Inventory“ entworfen. Dabei wurden u.a. Landsat-TM-Daten mit digitaler Karteninformation und Stichprobemessungen des Holzvorrats im Gelände verknüpft und in ein Geographisches Informationssystem

Dagegen sehen KÖHL UND BRASSEL (1998) die Einsatzmöglichkeiten von Satellitendaten für das schweizer Landesforstinventar (LFI) eher skeptisch. Vor allem die störende Wolkenbedeckung und die aufwendigen Korrekturen auf Grund der starken Topographie seien signifikante Hindernisse.

5.2.2 Waldtypenkartierung

Auch wenn nationale Inventuren europäischer Länder Fernerkundungsdaten nur in wenigen Ausnahmen als Datenquelle einsetzen (KÖHL UND BRASSEL 1998), wurde die Verwendbarkeit von Landsat-Daten für regionale Waldkartierungen und verschiedene forstliche Fragestellungen erprobt und deren Nützlichkeit unter Beweis gestellt. Im Folgenden soll eine Auswahl von Anwendungsbeispielen zeigen, wie Landsat-Daten für regionale Waldkartierungen eingesetzt wurden, welche unterschiedlichen Waldtypen ausgeschieden und welche Genauigkeiten erreicht wurden. Dabei wird auch jeweils kurz auf die Vorgehensweise eingegangen, um einen Einblick in die verschiedenen Möglichkeiten, eine bestimmte Fragestellung zu bearbeiten, zu geben.

5.2.2.1 Kartierung von Hauptwaldtypen

Der Wald/Nichtwaldentscheid wurde mit Hilfe von Bildern aus zwei Jahreszeiten durch ein Schwellenwertverfahren durchgeführt, daran anschließend wurden die Sommerdaten mit
der Maximum-Likelihood-Methode klassifiziert. Im Wald konnten sechs Bestandestypen unterschieden werden: Fichtenbestände, Fichten-Kiefern-Bestände, Kiefernbestände, Laubholzbestände, Laub-Nadelholz-Mischbestände sowie unbestockte Waldflächen bzw. nicht geschlossene Kulturen oder stark durchbrochene Waldbestände. Das Klassifizierungsergebnis konnte durch die Berücksichtigung von verschiedenen Wuchsgebieten, d.h. durch eine separate Optimierung in verschiedenen Teilgebieten wesentlich verbessert werden. Im Kartenblatt Regensburg lag die Klassifizierungsgenauigkeit zwischen 69,1 % für Laub-Nadelmischwald und 88,3 % für Fichten-Kiefern-Bestände.

5.2.2.2 Differenzierung auf Bestandesebene

Die Unterscheidung von natürlichen Altersklassen ist ebenfalls möglich, allerdings treten auch hier Einschränkungen auf.

In hinsichtlich der Altersklassenverteilung homogenen Laubmischwäldern konnten drei natürliche Altersklassen (Kultur-Dickung, Stangenholz, mittleres Baumholz-Altholz) mit einer durchschnittlichen Gesamtgenauigkeit von 85 % unterschieden werden. Eine Altersklassenunterscheidung ist auch in Nadelwäldern möglich, jedoch nur bei sehr homogenen Beständen und bei nur schwachem topographischen Einfluss. In einem alpinen Nadelwaldgebiet konnten nur noch zwei Altersklassengruppen unterschieden werden.

Allgemein nehmen die Grauwerte in den Kanälen TM 4 und TM 5 mit zunehmendem Alter ab, die größten Differenzen zeigen sich im nahen Infrarot. Oft überlagert jedoch die Baumartenmischung die Signaturunterschiede: im Laub/Nadelmischtwald oder beim Auftreten von Fichten-, Tannen- und Douglasienbeständen nebeneinander war die Unterscheidung von Altersklassen nicht möglich.

Mit Methoden der Satellitenfernerkundung können zweifellos wichtige Informationen über Art und Zustand der Waldbestockung gewonnen werden. Zusammenfassend sieht SCHARDT (1998) die Einsatzmöglichkeiten von Satellitendaten folgendermaßen:
Für großmaßstäbige Fragestellungen kann die Fernerkundung ergänzende Informationen in kurzen Zeitabständen liefern, allerdings nicht als alleinige Informationsquelle dienen.
Kapitel 5: Einsatz von Landsat-Daten in der Forstwirtschaft

Dafür reichen die Qualität der Ergebnisse, die geometrische Auflösung der Daten und die erzielbaren Klassifizierungsgenauigkeiten noch nicht aus. Die potentiellen Anwendungsbereiche im mittleren und kleinen Maßstabsbereich sind:

- Forstkarten im Maßstab 1 : 100.000 bis 1 : 200.000, beispielsweise für die forstliche Rahmenplanung;
- Verknüpfung mit anderer Karteninformation (Forstübersichtskarten, geologische Karten);
- Eingangsparameter für Modellierungen (Hydrologie, Klimaforschung);
- Basis für Lawinengefährdungskarten;
- Integration in Landesinformationssysteme.

5.3 Biomasseermittlung und Holzvorratsbestimmung

5.3.1 Vergleich von Fernerkundungsdaten

In welchem Bereich die multispektralen Landsat-Daten bei der Ermittlung des Bestandesvolumens im Vergleich zu anderen Fernerkundungssensoren einzuordnen sind, zeigten Hyypärä ET AL. (2000). Sie verglichen die Erklärungskraft und Genauigkeit von verschiedenen flugzeug- und satellitengestützt gewonnenen Fernerkundungsdaten bezüglich der Bestandesparameter Volumen (m³/ha), Grundfläche (m²/ha) und Mittelhöhe (m).

Für die Schätzung des Bestandesvolumens ergab sich (bei abnehmender Genauigkeit) folgende Reihenfolge: HUTSCAT, AISA, Luftbilder, SPOT-XS, SPOT-PAN, Landsat TM, ERS-Kohärenzbilder, JERS, ERS. Für die Schätzung der Grundfläche blieb die Reihenfolge unverändert, bei der Mittelhöhe überholte Landsat TM die Daten von SPOT-PAN. Zudem war die Vorverarbeitung der optischen Satellitendaten bedeutend einfacher als die der Radardaten.

Für einen Test der Baumartenunterscheidbarkeit mit Satellitendaten wurden fünf Waldklassen nach Baumartenmischung gebildet. In diesem Fall stieg die Aussagekraft von multispektralen Daten an, es lag SPOT-XS vor Landsat TM, dahinter folgten SPOT-PAN, ERS-Kohärenz, JERS und ERS.

5.3.2 Volumsbestimmung mittels Regression

Als mögliche Indikatoren für die Schätzung der Biomasse wurden die Vegetationsindizes aus Tabelle 9 berechnet und deren Zusammenhang mit den Referenzdaten untersucht.

<table>
<thead>
<tr>
<th>NDVI</th>
<th>(TM 4 - TM 3) / (TM 4 + TM 3)</th>
<th>RVI</th>
<th>TM 4 / TM 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>DVI</td>
<td>TM 5 – TM 7</td>
<td>ND</td>
<td>(TM 7 - TM 5) / (TM 7 + TM 5)</td>
</tr>
</tbody>
</table>

Tabelle 9: Kanalkombinationen der verwendeten Vegetationsindizes

Die Waldklassifikation erfolgte mit einer Entscheidungsbaummethode und Grenzwerten, wobei die Schwellenwerte zwischen den Waldtypen in den Kanälen TM 3 und TM 5 lagen. Der Einfluss der Topographie wird bei Verwendung von topographisch korrigierten Daten deutlich. Die Gesamtgenauigkeit der Klassifikation konnte im Vergleich zu den unkorrigierten Bildern von 75,1 % auf 81,2 % gesteigert werden.

Zwischen zwei Vegetationsindizes (DVI und NDVI) und der Waldbiomasse konnten lineare Zusammenhänge hergestellt werden (Tabelle 10). Die Korrelationskoeffizienten (r) waren zwar teilweise hoch, jedoch für die verschiedenen Waldtypen sehr unterschiedlich.

<table>
<thead>
<tr>
<th>Waldbiomasse</th>
<th>NDVI</th>
<th>DVI</th>
<th>Verwendete Regression</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laubwald</td>
<td>-0,32</td>
<td>0,80</td>
<td>-213,6 + 7,7 DVI</td>
</tr>
<tr>
<td>Kiefer</td>
<td>0,85</td>
<td>-0,65</td>
<td>3,4 + 3,72 NDVI</td>
</tr>
<tr>
<td>Jap. Sicheltanne</td>
<td>-0,49</td>
<td>-0,83</td>
<td>541,7 – 11,26 DVI</td>
</tr>
</tbody>
</table>

Tabelle 10: Korrelationskoeffizienten (r) und lineare Regressionen zwischen Vegetationsindizes und Biomasse für die verschiedenen Bestandstypen

Kapitel 5: Einsatz von Landsat-Daten in der Forstwirtschaft

Das Testgebiet, mit einem Waldaufbau hauptsächlich aus Kiefern und Eichen bei geringem Hektarvolumen (mittlere Volumen der Testgebiete 40 bis 90 m³/ha), lag im Nordosten Spaniens. Die Ausgangsbasis waren atmosphärisch und topographisch kalibrierte Satellitenbilder. Mit den TM-Kanälen und zwei Vegetationsindizes (NDVI sowie ein modifizierter NDVlc) als unabhängige und den, teilweise logarithmisch transformierten, Bestandeparametern als abhängige Variablen (Überschirmung, ln (Volumen), ln (Baumartenanteil)) wurden Regressionen gerechnet.

5.3.3 Kanalauswahl

bei Beständen mit einem Holzvorrat unter 150 m³/ha aufgrund der Hintergrundreflexion eine Volumsschätzung erschwerte.

5.3.4 Segmentierung

Mit einer überwachten Klassifikation (Maximum-Likelihood-Methode) sollten zehn Waldtypen klassifiziert werden. Dabei wurden als Ausgangsbilder die unveränderten Orginalbilder, tiefpassgefilterte Bilder (mit einem 5 x 5 Filter) und segmentierte Bilder verwendet und der Einfluss auf die Klassifizierungsgenauigkeit untersucht. Ein Tiefpass-Filter und vor allem Segmentierung kann die Varianz der Bildelemente innerhalb der einzelnen Regenwaldklassen verringern und so das Klassifizierungsergebnis verbessern. Im Rohbild konnte nur eine Klasse mit einer Genauigkeit von über 90 % bestimmt werden, im gefilterten Bild waren es drei und im segmentierten sechs. Bei der Klassifikation von drei zusammengefassten Klassen konnte die Klassifizierungsgenauigkeit von 65 % im Orginalbild auf 96 % im vor der Klassifizierung gefilterten und auf 98 % im zu Beginn segmentierten Bild gesteigert werden.
6 Objektorientierte Bildbearbeitung

Anstatt einzelne Pixel allein aufgrund ihrer spektralen Eigenschaft zu klassifizieren, setzten neue Verfahren auf die Abgrenzung in sich homogener Objekte als Basis für die weitere Bearbeitung.

Inspiriert wurden diese Verfahren durch die Wirkungsweise der menschlichen Wahrnehmung. Bei der visuellen Interpretation durch einen erfahrenen Interpreten werden über die reinen Reflexionswerte hinaus, bewusst oder unbewusst, zusätzliche Zusammenhänge erfasst. Das Bild löst (je nach Erfahrung) bestimmte Assoziationen aus, da neben der reinen Farbinformation auch Textur, Muster, Nachbarschaftsbeziehungen und ganz besonders die Gestalt entscheidend für die Objekterkennung sind.

6.1 Segmentierung

Allgemeine Kriterien bei der Bildung der Segmente sind:
• spektrale und/oder texturale Homogenität der Bildelemente innerhalb eines jeden Segments;
• spektrale und/oder texturale Verschiedenheit bzw. Trennstärke der Pixel gegenüber angrenzenden Segmenten;
• Formhomogenität (geometrische Einfachheit der Segmentgrenzen);
• spezielles thematisches Wissen (z.B. über die tatsächliche Form bestimmter Objekte).

* „Everything is related to everything, but near things are more related than distant things.“ (TOBLER 1970)
Es existieren zahlreiche Segmentierungsalgorithmen, die jeweils einzelne Kriterien stärker betonen als andere. Da die Kriterien einander zum Teil widersprechen, können nämlich nicht alle gleichzeitig voll erfüllt werden.

Eine sehr einfache Art der Segmentierung ist die Clusterbildung im Merkmalsraum. Dabei werden die einzelnen Pixel zu einer bestimmten Anzahl von Klassen (Clustern) zusammengefasst. Die Segmente ergeben sich aus im Bild räumlich zusammenhängenden Mengen von Pixeln derselben Klasse. Der spektralen Homogenität der Bildelemente innerhalb eines Segments und der Form der Segmente wird keine Beachtung geschenkt.

Segmentierung und Klassifizierung zeigen fließende Übergänge und sind nicht unabhängig voneinander. Das Ergebnis der Klassifizierung wird eigentlich schon als Eingangsinformation für die Segmentierung benötigt, um eine Unterteilung in sinnvolle Segmente zu erreichen. Die Segmentierungsergebnisse werden aber in jedem Fall für die Klassifizierung gebraucht, um Gestaltinformation und weitere Objekteigenschaften berücksichtigen zu können.

6.2 Wissensbasierte Auswertung

Durch diese hierarchische Struktur, in der jedes Objekt seine Nachbarn, seine Ober- und Unterobjekte kennt, können ausgewählte Objekte durch die Attribute anderer Objekte (auch deren Klassifikation) beschrieben werden. Unterobjekte können außerdem als Mittel für eine Texturanalyse verwendet werden.

Die multiresolution segmentation bietet zudem den Vorteil, zur Identifizierung verschiedener Objektklassen jeweils die Ebene zu benutzen, deren „Auflösung“ (Objektgröße) am geeignetsten erscheint. Die Nützlichkeit, auf verschiedene Ebenen zugreifen zu können, wird deutlich, wenn man an so unterschiedliche Objektklassen wie z.B. „Haus“ oder „Stadt“ denkt.

Es steht also eine große Anzahl von Objekteigenschaften zur Verfügung, auf die bei der Erstellung einer Klassenbeschreibung zurückgegriffen werden kann. Die folgende Beschreibung ist keineswegs vollständig, sondern greift pro Bereich nur einige Beispiele heraus.

- Spektrale Eigenschaften: Für jedes Objekt sind die Grauwerte aller zur Verfügung stehenden Kanäle abrufbar. Es können der Mittelwert und die Standardabweichung der Grauwerte eines jeden Objektes abgefragt werden, zusätzlich z.B. auch die mittlere Differenz zu seinen Nachbarobjekten.
- Formeigenschaften: Die Objekte besitzen verschiedenste Formparameter, die von einfachen Merkmalen wie Flächengröße, Grenzlänge, dem Verhältnis Länge zu Breite, bis zu aufwendiger berechneten wie „asymmetry“ oder „density“ reichen. Auch die Lage der Segmente im Bild (x- und y-Koordinate) kann angezeigt werden.
- Textureigenschaften: Die Textur von Objekten wird durch Eigenschaften der jeweiligen Unterobjekte beschrieben. Die Textur kann über spektrale Merkmale oder über Formparameter der Unterobjekte beschrieben werden (Kapitel 10.3).
Hierarchische Stellung: Auch in unklassifiziertem Zustand kennt jedes Segment seinen Platz in der Objekthierarchy (die Anzahl der darüber bzw. darunter liegenden Ebenen), die Anzahl der Nachbarobjekte und die der Unterobjekte.

6.3 Fuzzy-Logik

6.3.1 Grundlagen

Indem Fuzzy-Logik die scharfen Grenzen der klassischen Mengenlehre vermeidet und mit unscharfen Mengen (Fuzzy-Mengen) arbeitet, können fließende Übergänge, wie sie in der Natur vorherrschen, nachgebildet werden. In der klassischen Mengenlehre kann ein Element nur entweder einer Menge angehören oder nicht. Will man z.B. den Begriff „schnell“ definieren, so erfolgt dies in der klassischen Mengenlehre durch die Definition eines scharf abgegrenzten Intervalls (Abbildung 6). In
diesem Beispiel wird ein Auto A mit 48 km/h noch nicht als „schnell“, ein Auto B mit 52 km/h aber sehr wohl als „schnell“ eingestuft.

Die Abschwächung solch strenger Auswahlkriterien und die Möglichkeit verschiedene Formen von Übergängen anzuwenden, wie sie Fuzzy-Logik ermöglicht, entspricht auch eher dem menschlichem Empfinden.

![Abbildung 6](image_url)

Abbildung 6: Scharf abgegrenzte Mengen vs. Fuzzy-Mengen. Die Zugehörigkeitsfunktion definiert den Zugehörigkeitswert µ.

Solche unscharfen Begriffe wie „langsam“, „mittel“ oder „schnell“ werden auch als linguistische Variable bezeichnet und können durch unscharfe Mengen beschrieben werden. **Abbildung 7** zeigt Beispiele, wie Eingangsgrößen (u) durch verschiedene Formen von Funktionen in Zugehörigkeitswerte (µ(u)) von Fuzzy-Mengen umgesetzt werden. Sie verdeutlicht auch den Zusammenhang zwischen Aussagen der Umgangssprache und der Form von Zugehörigkeitsfunktionen.
Eine durchdachte Wahl der Zugehörigkeitsfunktionen ist entscheidend für die Tauglichkeit des Regelsystems. Durch die verschiedenen Formen der Funktionen, die jeweils von der Anwendung abhängen, und durch die Wahl der Verknüpfung mit unterschiedlichen Operatoren wird Wissen zu einem Expertensystem aufgebaut. Auch nicht normalverteilte Mengen können durch die flexiblen Formen der Zugehörigkeitsfunktionen gut beschrieben werden.

Fuzzy-Logik erleichtert das Arbeiten mit unpräzisen Daten und ermöglicht eine Berücksichtigung von Unsicherheiten in Modellparametern. In der Regelungstechnik werden Fuzzy-Steuerungen aufgrund ihrer Fehlerfreiheit und Zuverlässigkeit im Vergleich zur binären Datentechnik eingesetzt.

6.3.2 Klassifikation auf Basis von Fuzzy-Logik

Ein auf Fuzzy-Logik aufgebautes Klassifikationssystem berechnet für jedes Objekt bzw. Pixel einen Zugehörigkeitswert (*membership degree*) im Bereich von 0 bis 1 für alle Klassen, nach denen klassifiziert wird.

Die meisten in der Fernerkundung eingesetzten Klasifizierungsalgorithmen (z.B. die Maximum-likelihood-Methode oder der Hyperbox-Klassifikator) liefern nur die Aussage, ob ein Objekt einer Klasse angehört oder eben nicht. Auf diese Weise arbeitende Methoden werden auch als *hard classifiers* bezeichnet.
7 Untersuchungsgebiet und Datengrundlage

7.1 Das Untersuchungsgebiet

7.1.1 Lage

Das Untersuchungsgebiet liegt in Russland, am Übergang vom Westsibirischen Flachland zum Mittelsibirischen Bergland. Für die Auswertungen standen vier Testflächen zur Verfügung. Zwei der Testflächen liegen westlich, zwei östlich des Flusses Jenissei, zwischen der Einmündung des Flusses Angara im Norden und der Stadt Krasnojarsk im Süden, wo auch die Transsibirische Eisenbahn vorbei führt.

Die Landschaft im Bereich der Testflächen ist nicht sehr gebirgig, die Seehöhen reichen von knapp unter 100 m im Jennisei-Tal bis maximal 600 m. In den Testflächen liegen die Seehöhen vorwiegend zwischen 150 m und 300 m.

Die natürliche Vegetationsform des Großraumes ist borealer Wald - die Taiga - wobei das Untersuchungsgebiet eher an ihrem südlichen Rand liegt. Weiter nordwestlich sind Sumpfgebiete nicht selten, südlich beginnt das Auftreten von steppenähnlichen Vegetationsformen.
Die Großklimazone wird ebenfalls als boreal bezeichnet, sie ist feucht-kühl mit strengen Wintern. Die Niederschläge sind in den Sommermonaten am höchsten; nicht einmal in vier Monaten des Jahres erreicht die Durchschnittstemperatur mehr als 10° C.

7.1.2 Baumarten zusammensetzung

Im Bereich der Testgebiete besteht der Wald hauptsächlich aus folgenden Baumarten (IIASA 1999):
• bei den Nadelbäumen aus Lärche (Larix sibirica), Tanne (Abies sibirica), Fichte (Picea obovata), Kiefer (Pinus sylvestris) und Zirbe (Pinus cembra var. sibirica);
• bei den Laubbaumarten dominieren Birke (Betula pendula und B. pubescens), Zitterpappel (Populus tremula) sowie verschiedene Weidenarten (Salix sp.).

In den Referenzdaten der vier Testgebiete (Kapitel 7.3) kommen ausschließlich diese Baumarten vor.
Auch in Gesamtrussland machen nur sieben Baumarten den überwiegenden Teil (87%) der Wälder aus: Lärche 37,3 %, Kiefer 16,2 %, Fichte 10,7 %, Zirbe 5,6 %, Tanne 2 %; Birke 12, 4 %, Zitterpappel 2,7 % (SHVIDENKO UND NILSSON 2000).

7.1.3 Bewirtschaftung

Die Waldgebiete zeigen eine teilweise starke Bewirtschaftung, große Kahlschläge und deutlich erkennbare (Forst-)Straßen. In der Umgebung der Testgebiete befinden sich mehrere Dörfer und kleinere Städte; Krasnojarsk, das wirtschaftliche Zentrum der Region, ist nicht viel weiter als 100 km entfernt.

7.1.4 Beschreibung der Testgebiete

Von vier Forstrevieren, ein Testgebiet entspricht jeweils einem Forstrevier, stand ein Datensatz mit allen forstlich relevanten Parametern zur Verfügung∗.

Kapitel 7: Untersuchungsgebiet und Datengrundlage

Abbildung 9: Die genaue Lage der vier Testgebiete; dargestellt auf dem Satellitenbild, Kanalkombination ETM 4/ETM 3/ETM 2: R/G/B.

Die Testgebiete sind jeweils über 20.000 ha groß und besitzen im Durchschnitt über 1.000 Inventurteinheiten. Einige Hauptmerkmale vermittelt Tabelle 11.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Nordwest (NW)</td>
<td>29.420</td>
<td>1236</td>
<td>23,3</td>
<td>211,1</td>
</tr>
<tr>
<td>Südwest (SW)</td>
<td>26.239</td>
<td>547</td>
<td>48,0</td>
<td>160,6</td>
</tr>
<tr>
<td>Nordost (NO)</td>
<td>27.562</td>
<td>1606</td>
<td>17,2</td>
<td>170,7</td>
</tr>
<tr>
<td>Südost (SO)</td>
<td>20.875</td>
<td>964</td>
<td>21,7</td>
<td>163,3</td>
</tr>
</tbody>
</table>

Tabelle 11: Hauptmerkmale der Testflächen

Alle Baumarten treten auch als Reinbestände auf, meist bilden sie jedoch Mischbestände unterschiedlichster Kombinationen.

Nadelholzdominierte Zonen besitzen bei Mittelhöhen über 20 m höheres Bestandesvolumen (um die 300 Vfm/ha). Aber auch hier gibt es Bereiche mit niedrigen Bestockungsgraden (0,3 und 0,4) oder zahlreichen abgestorbenen Bäumen.
7.2 Satellitenbilder

Es standen zwei Vollszenen von Landsat 7 mit allen acht Kanälen des Sensor ETM+ zur Verfügung. Die Bodenauflosung entspricht 30 m, im panchromatischen Kanal (Kanal 8) 15 m und im thermischen Kanal (Kanal 6) 60 m.

<table>
<thead>
<tr>
<th>Bezeichnung</th>
<th>„Ost“</th>
<th>„West“</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lage (Zeile und Spalte)</td>
<td>142/020</td>
<td>144/020</td>
</tr>
<tr>
<td>Bildzentrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Östl. Länge</td>
<td>94,26°</td>
<td>91,21°</td>
</tr>
<tr>
<td>Nördl. Breite</td>
<td>57,19°</td>
<td>57,19°</td>
</tr>
<tr>
<td>Sonnenstand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zenitwinkel</td>
<td>54,1°</td>
<td>54,1°</td>
</tr>
<tr>
<td>Azimut</td>
<td>153,5°</td>
<td>153,7°</td>
</tr>
</tbody>
</table>

Tabelle 12: Satellitenbildparameter

Die Kalibrierungsparameter aller Kanäle waren für beide Aufnahmen identisch.

Die beiden Satellitenszenen liegen nebeneinander und besitzen einen schmalen Überlappungsbereich. Durch den minimalen Unterschied (2 Tage) im Aufnahmezeitpunkt kann auf beiden Bildern die selbe Phänologie der Vegetation vorausgesetzt werden. Für die Auswertung und Klassifizierung wurden nicht die gesamten Satellitenbilder benutzt, sondern bloß Ausschnitte, welche die Testflächen abdecken. Diese wurden bereits geometrisch entzerrt zur Verfügung gestellt (Kapitel 9.1.1)

7.3 GIS-Datensatz

Die Referenzdaten stammen aus der russischen Forstinventur und standen in Form einer Arc-View-Datei zur Verfügung.

Vor einer kurzen Beschreibung des Datensatzes wird ein Überblick über die Datenerfassung gegeben, um den Informationsgehalt besser abschätzen zu können.

7.3.1 Die russische Forstinventur

7.3.1.1 Datenerhebung

Die russischen Forstinventur wendet je nach Bewirtschaftungsintensität des Waldes zwei unterschiedliche Formen der Datenerhebung an: die Forstinventur und -planung (FIP) und die sogenannte „photo-statistische“ Methode.

Bei Erhebungen im Bestand wird diese Abgrenzung überprüft und gegebenenfalls berichtigt, die Bestandesparameter geschätzt und Winkelzählproben (WZP) zur Messung der Mittelhöhen und Grundflächen der Baumarten durchgeführt. Anhand dieser Messungen wird aus regional angepassten Ertragstafeln das Bestandesvolumen errechnet. Das Genauigkeitsniveau und die Anzahl der aufgenommen Parameter hängt von der wirtschaftlichen Entwicklung der Region und dem Wert des Waldes ab.

Die FIP liefert im Allgemeinen eine ziemlich genaue Beschreibung jeder Inventurinheit: Neben Standardparametern der Forsteinrichtung wie Waldkategorie, Baumartenzusammensetzung, Alter und Volumen werden z.B. auch Holzqualität und standörtliche Gegebenheiten wie Bodenbewuchs erhoben. Die Größe der Inventurinheiten reicht von 3-5 ha in dicht bevölkerten Teilen, bis zu mehr als 50 ha im Norden und Osten Sibiriens.

Die fernerkundungsgestützte „photo-statistische“ Methode, vor allem für nördliche und abgelegene Wälder konzipiert, verwendet in einem mehrstufigen Stichprobenverfahren Satellitenbilder, Luftbilder und Stichproben im Gelände. Im Satellitenbild erfolgt die Abgrenzung der Inventurinheiten sowie eine Statifizierung. Die Straten werden durch Baumartenkombination, Altersgruppe und Landschaftstyp beschrieben. In einer zweiten Phase werden Farbluftbilder im Maßstab 1:7.000 bis 1:10.000 für ca. 5 % der Fläche gewonnen. Von ausgewählten Inventurinheiten (den sogenannten photo-samples) werden dann im Luftbild die gefragten Parameter erhoben. Schließlich werden in 5-10 % der photosampels Feldmessungen im Bestand gemacht.

Bis 1956 gab es noch eine weitere Methode, die „Aerotaxation“. Sie wurde am Ende der 40er Jahre als spezielle Inventurmethode für entlegene Gebiete entwickelt. In kleinmaßstäblichen Luftbildern (Maßstab 1:100.000) wurden die Inventurinheiten abgegrenzt und Flugrouten in Abständen von 2 - 4 km (bis 4 - 8 km in lockerer Taiga) geplant. Die Attribute für jeden Bestand wurden vom Flugzeug aus durch Inventurexperten geschätzt.

7.3.1.2 Genauigkeiten

Das Handbuch zur Forstinventur Russlands (FIP) enthält eine Vorschrift, mit welcher Genauigkeit die wichtigsten Bestandesparameter zu erheben sind (Tabelle 13).

Es werden drei Gruppen von Wäldern unterschieden. Je näher die Bestände dem Erntealter kommen, um so höher ist ihre Priorität und somit auch die geforderte Genauigkeit.

<table>
<thead>
<tr>
<th>Managementtyp</th>
<th>Volumen/ha</th>
<th>Grundfläche</th>
<th>Baumhöhe</th>
<th>Baumartenanteil</th>
<th>Durchmesser (BHD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erntereife Bestände</td>
<td>15</td>
<td>12</td>
<td>8</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Vornutzungs-bestände</td>
<td>20</td>
<td>16</td>
<td>10</td>
<td>15</td>
<td>10</td>
</tr>
<tr>
<td>Alle übrigen Bestände</td>
<td>20</td>
<td>16</td>
<td>10</td>
<td>15</td>
<td>12</td>
</tr>
</tbody>
</table>

Das Handbuch legt u.a. auch fest, wie viele Winkelzählproben in die einzelnen Bestände zu legen sind. Die Anzahl richtet sich nach der Bestandesstruktur, dem Bestockungsgrad und der Flächengröße.

<table>
<thead>
<tr>
<th>Waldtyp</th>
<th>Bestockungsgrad</th>
<th>Fläche [ha]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einschichtig, homogen, eine</td>
<td>0,9 – 1</td>
<td>3</td>
</tr>
<tr>
<td>Baumart</td>
<td>0,6 - 0,8</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>0,3 - 0,5</td>
<td>5</td>
</tr>
</tbody>
</table>

Die Vorgaben variieren je nach Bestandesstruktur. Bei mehreren Schichten, Mischbeständen, inhomogenen Beständen bezüglich Volumen oder bei steigender Hangneigung ist die jeweilige Zahl der WZPs höher.

7.3.2 Informationsgehalt

7.3.2.1 Aufbau des Datensatzes

Der Datensatz stellt für jede Inventurinheit umfangreiche Information zur Verfügung.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Bezeichnung (original)</th>
<th>Beschreibung und Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identifikationsnummer</td>
<td>(Unique)</td>
<td>Jeder Bestand besitzt eine eindeutige Identifikationsnummer.</td>
</tr>
<tr>
<td>Forstrevier</td>
<td>(GIR)</td>
<td>Die vier Forstreviere stellen jeweils ein Testgebiet dar.</td>
</tr>
</tbody>
</table>
Kapitel 7: Untersuchungsgebiet und Datengrundlage

Variable

<table>
<thead>
<tr>
<th>Variable</th>
<th>Bezeichnung (orginal)</th>
<th>Beschreibung und Anmerkungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>„Abteilung“</td>
<td>(KV)</td>
<td>Eine administrative Einheit von 50 bis 4000 ha, deren Grenzen entweder natürlich (z.B. Flussläufe) oder künstlich (Rechteckform) sind.</td>
</tr>
<tr>
<td>Inventurinheit, „Bestand“</td>
<td>(SKNR)</td>
<td>In sich möglichst homogene Fläche bezüglich Baumarten, Alter, Mittelhöhe, Bonität, Bestockungsgrad. Die Abgrenzung erfolgt aus Luftbildern, sollte sich im Bestandesaufbau wiederspiegeln oder ist durch Abteilungsgrenzen bedingt (Abbildung 13).</td>
</tr>
<tr>
<td>Fläche</td>
<td>(Area_ha)</td>
<td>Angegeben in Hektar</td>
</tr>
<tr>
<td>Landbedeckungsklasse</td>
<td>(ZK)</td>
<td>Die Landbedeckungsklassen werden durch eine Zahlenkombination codiert, wobei jede Klasse genau definiert ist.</td>
</tr>
<tr>
<td>Bestockungsgrad</td>
<td>(SKAL)</td>
<td>Angaben in Prozent</td>
</tr>
<tr>
<td>Bestandesvolumen</td>
<td>(TUR1H)</td>
<td>Stammvolumen aller lebenden Baumarten im Bestand. In älteren Beständen mit einer Kluppschwelle von 6 cm (BHD) berechnet.</td>
</tr>
<tr>
<td>Alter</td>
<td>(AMZ)</td>
<td>Mittleres Alter der dominanten Art</td>
</tr>
</tbody>
</table>

Beispiele für die Definition von Waldklassen:
- Natürlicher Bestand (1101): Aus Naturverjüngung entstanden; Bestockungsgrad \(\leq 1/10 \) für junge Altersgruppen und \(\geq 3/10 \) für alle anderen Altersgruppen.
- Waldbrandflächen (1503): Die stehen gebliebenen Bäume besitzen einen Bestockungsgrad \(\leq 1/10 \).
- Kahlschlagsflächen (1509): Bestockungsgrad der stehenden Bäume \(\leq 1/10 \); Verjüngung natürlich oder künstlich.

Getrennt für die Baumarten Fichte, Tanne, Kiefer, Lärche, Zirbe, Birke, Zitterpappel

<table>
<thead>
<tr>
<th>Mischungsverhältnis</th>
<th>(KF)</th>
<th>Baumartenanteil in Zehntel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Höhe</td>
<td>(H)</td>
<td>Mittlere Baumhöhe in m</td>
</tr>
<tr>
<td>Durchmesser</td>
<td>(D)</td>
<td>Durchmesser der vorhandenen Baumarten, nach dem quadratischen Mittel berechnet. Gemessen in 1,3 m Höhe, angegeben in Dezimeter.</td>
</tr>
</tbody>
</table>

Tabelle 15: Aufbau und Inhalt des GIS-Datensatzes
7.3.2.2 Diskussion forstlicher Parameter

Bei genauer Durchsicht des Datensatzes und der Definitionen der Variablen konnten Hinweise für die Relevanz im Zusammenhang mit der Satellitenbildauswertung gemacht werden.

- **Bestockungsgrad:** Der Bestockungsgrad berechnet sich aus dem Verhältnis zwischen tatsächlicher Grundfläche und einer idealen Bestockung (aus Ertragstafeln). Bei gegebener Grundfläche hängt er von Baumart, Standortgüte und Baumalter ab. Der Bestockungsgrad kann folglich nicht ohne weiteres mit Grundfläche, Stammzahl oder Überschirmungsprozent in Verbindung gesetzt werden. Er entspricht nicht dem Anteil an Bodensicht, und es besteht auch kein einfacher Zusammenhang, was für die Satellitenbildauswertung von Vorteil wäre. Bestände mit gleicher Überschirmung können völlig unterschiedliche Bestockungsgrade besitzen.

- **Standortsparameter:** Eine Angabe der Standortgüte oder ähnliches fehlt. Dadurch ist keine Berücksichtigung unterschiedlicher Wuchspotentiale möglich. Ebenso finden sich im Datensatz keine Angaben über Art und Intensität des Bodenbewuchses.

8 Überblick Vorgehensweise

Die folgende Seite bietet einen Überblick über den Ablauf der Datenanalyse, der Datenbearbeitung sowie die dafür eingesetzten Programmpakete.

Die Vorverarbeitung der Satellitenbilder, die radiometrische und geometrische Korrektur, wurde mit der Fernerkundungs-Software ER Mapper (Version 5.5 bzw. 6.1) durchgeführt. Aus den Referenzdaten der Forstinventur, als Vektordatensatz in Form einer ArcView-Datei vorliegend, wurden den georeferenzierten Satellitenbildausschnitten entsprechende Teilbereiche im Rasterformat erzeugt, um diese in eCognition (Version 1.0) als thematische Layer, welche die gesamte Information des GIS-Datensatzes enthalten, verwenden zu können.

eCognition wurde dazu verwendet, die Bilder zu segmentieren, die Texturanalyse sowie die Klassifizierung und deren Evaluierung durchzuführen. Zur Signaturanalyse wurde, aufgrund besserer graphischer Darstellungsmöglichkeiten und für die Berechnung der Regressionen, das Statistikprogramm SPSS 10.0 herangezogen.

- Ablauf der Datenbearbeitung
- Versuch der Integration, konnte allerdings nicht verwendet werden
- Nicht im Rahmen der Diplomarbeit ausgeführt. Die Satellitenbildausschnitte wurden bereits in georeferenzierter Form zur Verfügung gestellt.

Darüber hinaus bestehen zahlreiche Querverbindungen, Beeinflussungen und Rückkoppelungen zwischen den einzelnen Teilbereichen der Analyse, die nicht alle dargestellt werden konnten. Beispielsweise wirkte die Signaturanalyse auf die Klassifizierung ein (Anzahl und Verteilung der Klassen), die Untersuchung des GIS-Datensatzes hatte Einfluss auf die Bestimmung der Trainingsflächen bzw. Evaluierungsflächen, oder der Vergleich der Genauigkeitskennzahlen bewirkte Abwandlungen im Klassifizierungsverfahren.
Kapitel 8: Überblick Vorgehensweise

Orginal Landsat-Szenen
Integration des panchromatischen Kanals
Digitales Geländemodell

Georeferenzierung
Georeferenzierte Satellitenbildausschnitte
Vorverarbeitung: Radiometrische Korrektur, Kanalkombinationen

4 Testflächen (Kanäle ETM 1-5, 7,8, sowie NDVI, 5/2)

4 Teilbereiche (thematischer Layer in Rasterformat)

GIS-Datensatz der Forstinventur (Vektorformat)
Inhaltliche Bearbeitung, Auswahl Bestände, Umwandlung

ER Mapper ArcView

Digitales Geländemodell

4 eCognition-Projekte
Segmentierung: Bestandesgrenzen, Unterebene

Texturanalyse
2 Trainingsflächen

Klassifizierung: Bestandesvolumen, Baumartenzusammensetzung

2 Evaluierungsflächen
Genauigkeitsanalyse

SPSS

Signaturanalyse, Scatterplots-Analyse
9 Datenaufbereitung

9.1 Bearbeitung Satellitenbild

9.1.1 Geometrische Korrektur und Integration des panchromatischen Kanals

Um die Satellitenbilder mit dem Datensatz verschneiden zu können, müssen sie geometrisch möglichst exakt übereinstimmen. Durch eine Georeferenzierung wurden die Satellitenbildteile auf die Projektion des GIS-Datensatzes gebracht und Lageverschiebungen innerhalb des Satellitenbildes, die sich auf Grund von Geländehöhenunterschieden ergeben, beseitigt.

Vier die Testflächen abdeckende Ausschnitte wurden bereits georeferenziert zur Verfügung gestellt. Die genaue Vorgehensweise bei der Entzerrung war, ebenso wie die Höhe der Restfehler, nicht bekannt.

Allerdings lagen nur die Landsat-Kanäle ETM 1 bis ETM 7 in geometrisch entzerrter Form vor. Der panchromatische Kanal (ETM 8) war nicht im Datensatz integriert. Der panchromatische Kanal wurde mit Hilfe von Passpunkten auf die Geometrie der bereits georeferenzierten Kanäle gebracht, um ihn in die Analysen mit einbeziehen zu können. Die Entzerrung erfolgte mit einem Transformationspolynom dritten Grades und dem Resamplingverfahren „Nächster Nachbar“ (Nearest Neighbor), welches den Vorteil hat, die ursprünglichen Grauwerte der Bildelemente beizubehalten.

In jedem der vier Satellitenbildausschnitte wurden bis zu 40 Passpunkte ausgewählt. Tabelle 16 zeigt die tatsächlich zur Entzerrung verwendeten Passpunkte und den Restfehler. Der maximale RMS (Root Means Square error) lag bei 0,67, was bei einer Pixelgröße von 15 m einer Abweichung von 10 m entspricht.

<table>
<thead>
<tr>
<th>Testfläche</th>
<th>Verwendete Passpunktpaare</th>
<th>RMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW</td>
<td>19</td>
<td>0,05-0,56</td>
</tr>
<tr>
<td>SW</td>
<td>19</td>
<td>0,03-0,67</td>
</tr>
<tr>
<td>NO</td>
<td>22</td>
<td>0,02-0,51</td>
</tr>
<tr>
<td>SO</td>
<td>19</td>
<td>0,04-0,57</td>
</tr>
</tbody>
</table>

Tabelle 16: Anzahl der Passpunkte und Restfehler

Als Passpunkte wurden häufig Ecken von Kahlschlagsflächen oder eindeutig identifizierbare Baumgruppen verwendet, da wenig „künstliche“ Objekte vorhanden bzw. eindeutig zu erkennen waren.
Da die Bilder vom selben Sensor mit identischem Aufnahmezeitpunkt und der selben Aufnahmegeometrie stammen, sind eventuelle Probleme minimiert, da keine zwischenzeitlichen Veränderungen, nicht einmal die Veränderung des Schattenwurfes, möglich sind.

9.1.2 Radiometrische Korrektur

9.1.2.1 Überblick zur radiometrischen Korrektur

Eine vollständige radiometrische Korrektur, deren Ziel eine Normierung (Kalibrierung) oder zumindest Anpassung von Bilddaten verschiedener Aufnahmezeitpunkte oder unterschiedlicher Sensoren ist, kann in die Teilbereiche atmosphärische und topographische Korrektur untergliedert werden. Die spektrale Signatur der kalibrierten Daten soll am Ende, von Störungen bereinigt, allein von den Reflexionseigenschaften der Bodenbedeckung abhängen.

9.1.2.2 Korrekturverfahren

Die verschiedenen Verfahren zur topographischen Korrektur können in vier Gruppen eingeteilt werden (Einteilung nach ITTEN ET AL. 1992):

- Statistisch-empirische Korrektur: Basiert auf einer linearen Beziehung zwischen dem spektralen Bilddatenkanal und dem Beleuchtungsmodell;
- Cosinus-Korrektur: Unter Voraussetzung der Lambertschen Objektreflexion wird anhand eines trigonometrischen Ansatzes (Einbeziehung Geländeneigung und Einstrahlungswinkels) der Reflexionswert auf den Wert einer ebenen Fläche korrigiert;
- Minnaert-Korrektur (halbempirisches Verfahren): Verbessert die Korrektur bei nicht-Lambertschen Reflexionsverhältnissen durch Erweiterung der Cosinus-Korrektur um einen Potenzfaktor (Minnaert-Konstante);
- C-Korrektur (halbempirisches Verfahren): Benutzt die Cosinus-Korrektur als Basis. Durch den empirischen Faktor C soll die diffuse Streustrahlung der Atmosphäre nachgebildet und damit eine Überkorrektur bei flachem Sonneneinstrahlwinkel vermieden werden.

Zu möglichen Fehlern bei topographischer Korrektur siehe (ORTHABER 1999).
Im vorliegenden Fall sollten die Satellitenbildausschnitte durch ein halbempirisches Verfahren mit Schätzung des Anteils der direkten Sonneneinstrahlung kalibriert werden. Dabei wird in einem Arbeitsschritt die atmosphärische und topographische Korrektur zusammengefasst. Die Basis des Kalibrierungsverfahrens wird durch folgende Formel ausgedrückt:

\[DN_{\text{cal}} = \frac{DN_{\text{org}} - apr}{cs \cdot \cos i + (1 - cs)} \]

- \(DN_{\text{cal}} \): kalibriertes Grauwert
- \(DN_{\text{org}} \): Orginalgrauwert
- \(apr \): atmospheric path radiance: Luftlicht
- \(cs \): Anteil direkter Sonnenstrahlung an der Globalstrahlung
- \(i \): Winkel zwischen Geländeoberflächennormaler und Richtung zur Sonne

Die Eingangsgrößen werden folgendermaßen ermittelt: Das Beleuchtungsmodell, welches die \(\cos i \)-Werte darstellt, wird aus dem digitalen Geländemodell und dem Sonnenstand zum Aufnahmezeitpunkt berechnet. Der Einfluss des Luftlichts (atmospheric path radiance) wird durch eine Untersuchung der Histogramme des jeweiligen Kanals bestimmt, wobei „dunkle Objekte“ die tiefsten gültigen Werte liefern (DOS, Kapitel 9.1.2.6). Das Verhältnis zwischen direkter Sonneneinstrahlung und diffuser Himmelsstrahlung wird aus dem Bild selbst geschätzt. Durch visuellen Vergleich (bei gleicher Landbedeckungsklasse sollen Sonnen- und Schattenhänge ident erscheinen) wird der \(cs \)-Wert ermittelt, nach dessen Anwendung die Beleuchtungsunterschiede optimal kompensiert werden.

9.1.2.3 Digitales Geländemodell

Eine Voraussetzung für die Anwendung der oben genannten Korrekturmodelle ist die Verfügbarkeit eines geeigneten digitalen Geländemodells (DGM). Bei der Berechnung des Beleuchtungsmodells stellte sich heraus, dass eine erhebliche Lageungenaigkeit des vorhandenen DGM gegeben war (bis 300 m) und das Korrekturverfahren daher nicht angewandt werden konnte (Abbildung 10 und Tabelle 17).

Abbildung 10: Satellitenbild (ETM 8, links) und digitales Geländemodell (rechts) im Vergleich
Zur Überprüfung, ob es sich um eine leicht zu behebende Verschiebung oder um eine unregelmäßige Verzerrung handelt, wurden Punktpaare im Satellitenbild und im Geländemodell ausgewählt und ihre Verschiebung in x-Richtung (Ost-West) und y-Richtung (Nord-Süd) bestimmt (Tabelle 17).

<table>
<thead>
<tr>
<th>Punkt-Nr.</th>
<th>Δx [m]</th>
<th>Δy [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-100</td>
<td>+110</td>
</tr>
<tr>
<td>2</td>
<td>+70</td>
<td>+210</td>
</tr>
<tr>
<td>3</td>
<td>+120</td>
<td>+180</td>
</tr>
<tr>
<td>4</td>
<td>-190</td>
<td>+70</td>
</tr>
<tr>
<td>5</td>
<td>-160</td>
<td>+100</td>
</tr>
<tr>
<td>6</td>
<td>-190</td>
<td>+50</td>
</tr>
<tr>
<td>7</td>
<td>-260</td>
<td>+150</td>
</tr>
<tr>
<td>8</td>
<td>-240</td>
<td>+100</td>
</tr>
<tr>
<td>9</td>
<td>-120</td>
<td>+90</td>
</tr>
<tr>
<td>10</td>
<td>-150</td>
<td>+80</td>
</tr>
</tbody>
</table>

Diese Angaben enthalten zwar beträchtliche subjektive Ungenauigkeiten, da exakt korrespondierende Punkte schwer zu identifizieren sind. Geländehöhen sind im Satellitenbild nur schwer zu erkennen, zudem fallen scharf erscheinende Taleinschnitte im DGM (Rasterweite 50 m) oft eher flach aus. Dennoch ist erkennbar, dass der Lagefehler nicht regelmäßig ist.

Tabelle 17: Lagefehler des DGM* von ausgewählten Punktpaaren (Punkte 1-5 liegen in SO, Punkte 6-10 in NW)

Da in diesem Fall, durch die Ungenauigkeit des DGM, kein Ausgleich des Geländeeinflusses zu erwarten war, wurde keine topographische Korrektur durchgeführt. Das Weglassen der topographischen Korrektur erscheint vertretbar, da das Geländerelief der Testflächen nicht extrem ist und die Seehöhen nur bis ca. 600 m reichen. Wie eine Analyse der Beleuchtungsmodelle zeigte, waren auch die Beleuchtungsunterschiede innerhalb der Testflächen nicht sehr stark ausgeprägt. Für das gesamte mittlere Beleuchtungsmodell (welches die Testflächen SO und NW abdeckte) lagen 99% der cos i -Werte im Bereich von 0,74 bis 0,85.

9.1.2.4 Geländeeinfluss

Wenn auch keine schroffen Geländeformen auftreten, so lassen Taleinschnitte doch einen Einfluss der Topographie auf die Reflexion erkennen. Hier könnte eine Korrektur Verbesserungen bewirken, v.a. in Hinblick auf die angestrebte Klassifizierung, welche bereits geringe Grauwertunterschiede innerhalb der Walldfläche berücksichtigt.

*Der „Blattschnitt“ der DGM stimmte nicht mit dem der Landsat-Szenen überein, die Testflächen sind auf drei DGM-Teile verteilt.
9.1.2.5 Vereinfachte Methoden der radiometrischen Korrektur

Ratio-Bilder sind der einfachste Weg, reliefbedingte Helligkeitsunterschiede auszugleichen. Sie werden gebildet, indem die Grauwerte eines Kanals durch die entsprechenden Werte in einem anderen Kanal dividiert werden.

<table>
<thead>
<tr>
<th>Landbedeckung X</th>
<th>Grauwerte</th>
<th>Kanal A</th>
<th>Kanal B</th>
<th>Ratio (A/B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sonnenhang</td>
<td>36</td>
<td>38</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Schattenhang</td>
<td>18</td>
<td>19</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Landbedeckung Y</th>
<th>Sonnenhang</th>
<th>24</th>
<th>32</th>
<th>0,75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schattenhang</td>
<td>12</td>
<td>16</td>
<td></td>
<td>0,75</td>
</tr>
</tbody>
</table>

Tabelle 18: Fiktives Beispiel zur Wirksamkeit von Ratiokanälen

Eine atmosphärische Korrektur ist voranzustellen, da der Atmosphäreneinfluss eine additive Komponente darstellt und zudem in den verschiedenen Spektralkanälen ungleich groß ist.

Beim Einsatz von Ratiokanälen ist besonders auf die Skalierung des Ergebnisses zu achten, weiter können sie vorhandene Rauschmuster verstärken (LILLESAND UND KIEFER 2000, HILDEBRANDT 1996).
Vegetationsindizes als Kennziffern von Pflanzenbeständen, können einerseits direkt mit Vegetationseigenschaften (Blattmasse, Blattflächenindex) in Verbindung gebracht werden, beinhalten andererseits den selben Effekt wie Ratiokanäle, soweit sie durch Division zweier Kanäle gebildet werden (Kapitel 4.3).

9.1.2.6 Luftlichtkorrektur

Abbildung 12: Prinzip der Luftlichtkorrektur. Die Differenz a wird als Folge des Atmosphäreneinflusses interpretiert und als Korrekturgröße von den Grauwerten aller Bildelemente abgezogen (aus HILDEBRANDT 1996).

Die „dunklen Objekte“ wurden jeweils für die gesamte Satellitenszene bestimmt. In jedem Kanal wurde der Ursprung der kleinsten Grauwerte verfolgt und dessen Plausibilität geprüft (Wasser, Sumpfgebiete). Bei der Histogrammanalyse wurde zudem darauf geachtet, dass es sich bei kleinsten Werten nicht um vorgelagerte Störungen handelt.
Kapitel 9: Datenaufbereitung

Tabelle 19 zeigt die ermittelten Werte. Sowohl die Abfolge als auch das Verhältnis zwischen den Satellitenszenen erschien plausibel (die Wolkenbedeckung im westlichen Satellitenbild war etwas stärker).

<table>
<thead>
<tr>
<th>Grauwertabzug</th>
<th>Kanal</th>
<th>West</th>
<th>Ost</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETM1</td>
<td>-51</td>
<td>-50</td>
<td></td>
</tr>
<tr>
<td>ETM2</td>
<td>-34</td>
<td>-30</td>
<td></td>
</tr>
<tr>
<td>ETM3</td>
<td>-22</td>
<td>-20</td>
<td></td>
</tr>
<tr>
<td>ETM4</td>
<td>-13</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>ETM5</td>
<td>-5</td>
<td>-5</td>
<td></td>
</tr>
<tr>
<td>ETM7</td>
<td>-4</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>Pan</td>
<td>-17</td>
<td>-13</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 19: Abzug der Werte in den einzelnen Kanälen.

Der unerwartete Effekt, der sich durch diese Vorverarbeitung („Korrektur“) zeigte, wird in Kapitel 10.2.3.2 besprochen.

9.1.3 Berechnung spezifischer Kanalkombinationen

Ratiokanäle können einerseits zum Ausgleich reliefbedingter Helligkeitsunterschiede benutzt werden (Kapitel 9.1.2.5), andererseits können sie objektbedingte Grauwertunterschiede verstärken und somit als Vegetationsindex dienen (Kapitel 4.3).

Für alle vier Teilbilder wurde der NDVI (Normalized Difference Vegetation Index) sowie der Ratiokanal ETM 5/ETM 2 berechnet. Die errechneten Werte wurden mit Hilfe einer einfachen Funktion so transformiert, dass sie möglichst den gesamten Wertebereich eines 256 Grauwerte umfassenden Bildes (8-bit) ausfüllen (Tabelle 20 und Tabelle 21).

<table>
<thead>
<tr>
<th>Testfläche</th>
<th>Orginalwertebereich</th>
<th>Gestreckter Wertebereich*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum</td>
<td>Maximum</td>
</tr>
<tr>
<td>SW</td>
<td>-0,586</td>
<td>0,957</td>
</tr>
<tr>
<td>NW</td>
<td>-0,120</td>
<td>0,956</td>
</tr>
<tr>
<td>SO</td>
<td>-0,857</td>
<td>0,864</td>
</tr>
<tr>
<td>NO</td>
<td>-0,231</td>
<td>0,898</td>
</tr>
</tbody>
</table>

*T transformationsgleichung: NDVI_{gestreckt} = (NDVI_{original} + 0,86)·140

Tabelle 20: Wertebereich des NDVI

Bei der Berechnung des Ratiokanals ETM 5/ETM 2 ergaben sich für die beiden Testflächen auf dem östlichen Satellitenbild Wertebereiche, die sich von denen auf dem westlichen deutlich unterschieden. Daher wurde keine einheitliche Transformationsfunktion angewandt, sondern für die Teilflächen des östlichen bzw. des westlichen Satellitenbildes unterschiedliche, um den Wertebereich jeweils optimal auszunützen und somit den Kontrast im Ratiokanal zu erhöhen.
Kapitel 9: Datenaufbereitung

<table>
<thead>
<tr>
<th>Testfläche</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Multiplikator m*</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW</td>
<td>0</td>
<td>14,5</td>
<td>16,4</td>
</tr>
<tr>
<td>NW</td>
<td>0</td>
<td>15,5</td>
<td></td>
</tr>
<tr>
<td>SO</td>
<td>0,2</td>
<td>5,0</td>
<td>44,3</td>
</tr>
<tr>
<td>NO</td>
<td>1,4</td>
<td>5,75</td>
<td></td>
</tr>
</tbody>
</table>

* Transformationsgleichung: ETM 5/ETM 2gestreckt = ETM 5/ETM 2original · m

Tabelle 21: Wertebereich des Ratiokanals ETM 5/ETM 2

Mit dem NDVI wird ein weit verbreiteter Vegetationsindex verwendet, dessen Zusammenhang mit unterschiedlichen Vegetationsmerkmalen (z.B. LAI : Blattflächenindex) und mit der Waldbiomasse verschiedentlich aufgezeigt wurde.

9.2 Bearbeitung des GIS-Datensatzes

Der ursprüngliche Datensatz wurde modifiziert und entsprechend der Aufgabenstellung ergänzt, um Fehlinterpretationen im Zuge der Auswertung zu vermeiden. Die offensichtlich nicht für die Klassifikation geeigneten Bestände wurden ausgesondert, dem Datensatz Hilfsvariablen angefügt, und schließlich die unterschiedliche Eignung der vier Testflächen beurteilt.

9.2.1 Eignung der Bestände

Die Referenzdaten wurden auf Übereinstimmung mit der aktuelleren Situation auf dem Satellitenbild geprüft, um in der Zwischenzeit erfolgte Veränderungen festzustellen und Bestände, die aus anderen Gründen für den Klassifikationsprozess ungeeignet waren, auszuschließen.

Die betreffenden Inventureinheiten wurden durch eine visuelle Überprüfung ausgewählt, bei der die Bestandsgrenzen aus dem GIS-Layer über das Satellitenbild gelegt wurden.

Die Hauptgründe für offensichtliche Abweichungen zwischen den Inventurdaten und der Satellitenbildinformation waren:

Die Signaturanalyse zeigte deutlich die Wirksamkeit dieser Auslese (Kapitel 10.2.3.1). Der Zusammenhang zwischen Bestandesattributen und der Reflexion in den einzelnen Landsat-Kanälen verbesserte sich wesentlich.

Auch waren bei der Auswertung keine starken Ausreißer mehr zu finden. Aus dem Datensatz wurden keine Daten entfernt, ohne dass dies durch die Situation am Boden eindeutig begründbar war.

9.2.2 Datensatzaufbereitung

Für die einzelnen Bestände wurden zusammenfassende Variablen berechnet bzw. neue Einteilungen geschaffen, die an die Erfordernisse der Satellitenbildauswertung besser angepasst sind. Diese Einteilungen wurden bei der Beurteilung der Testflächen herangezogen.

Kapitel 9: Datenaufbereitung

<table>
<thead>
<tr>
<th>Volumsklassen</th>
<th>Bestandstyp</th>
<th>Kurzbezeichnung</th>
<th>Laubholzanteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Vfm/ha</td>
<td>Laubholz-Reinbestand</td>
<td>LH</td>
<td>≥ 9/10</td>
</tr>
<tr>
<td>1-20 Vfm/ha</td>
<td>Laubholzdominierter Mischbestand</td>
<td>LHm</td>
<td>8/10 bis 5/10</td>
</tr>
<tr>
<td>21-50 Vfm/ha</td>
<td>Nadelholzdominierter Mischbestand</td>
<td>NHm</td>
<td>4/10 bis 2/10</td>
</tr>
<tr>
<td>51-100 Vfm/ha</td>
<td>Nadelholz-Reinbestand</td>
<td>NH</td>
<td>≤ 1/10</td>
</tr>
<tr>
<td>101-150 Vfm/ha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>151-200 Vfm/ha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>201-250 Vfm/ha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>251-300 Vfm/ha</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 300 Vfm/ha</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9.2.3 Analyse der Testflächen

Die prinzipielle Eignung für die Erarbeitung des Klassifikationsalgorithmus bzw. als Testfläche zur Prüfung der Genauigkeit der Klassifizierung wurde untersucht. Die Beurteilung der vier zur Verfügung gestellten Testflächen erfolgte nach den Kriterien:

- Baumartenzusammensetzung: Vorkommen und Verteilung von Reinbeständen der verschiedenen Baumarten und Zusammensetzung der Mischbestände;
- Bestandesvolumen: Vorhandensein und möglichst gleichmäßige Verteilung aller Volumsklassen, um Überrepräsentation von hohen Volumsklassen oder Kahlschlägen zu vermeiden;
- Altersaufbau: Auch hier wurde ein möglichst ausgewogenes Verhältnis der Altersklassen angestrebt.

9.2.4 Vorverarbeitung für eCognition

Die Referenzdaten der Forstinventur, die in Form einer ArcView-Datei im Vektorformat vorlagen, wurden in einen Rasterdatensatz mit einer Pixelgröße von 15 m x 15 m umgewandelt werden, um in eCognition verwendet werden zu können. Dadurch stand in eCognition ein sogenannter thematischer Layer zur Verfügung, der sowohl für als Vorlage für die Segmentierung als auch bei der Klassifizierung als Trainingsdatensatz und bei der Verifizierung als Kontrollgröße diente.
10 Datenauswertung

Damit eine Klassifikation von Volumsklassen und Baumartengruppen aus Landsat-Daten erfolgreich sein kann, müssen die Reflexionswerte des Satellitenbildes mit den entsprechenden Bestandesparametern korrelieren. Daher wurde der Zusammenhang zwischen den mittleren Grauwerten der Inventurinheiten und den forstlichen Parametern nach Art und Form untersucht. Es wurde die Erklärungskraft der einzelnen Landsat-Kanäle verglichen und der Versuch unternommen, wesentliche Einflussfaktoren auf die Straffheit des Zusammenhanges zu identifizieren (Kapitel 10.2). In Kapitel 10.1 werden die Zusammenhänge der Bestandesparameter untereinander aufgezeigt und in Kapitel 10.3 wird die Unterstützung der Klassifizierung durch Texturparameter analysiert.

10.1 Zusammenhang von Bestandesparametern

Bei einer Untersuchung der Abhängigkeit einzelner Bestandesparameter von der spektralen Signatur, ist zu bedenken, dass auch die Bestandesparameter untereinander stark zusammenhängen.

Testfläche NO

Abbildung 14: Zusammenhang zwischen Alter und Bestandesvolumen [Vfm/ha], aufgetrennt nach Baumartengruppen, dargestellt für die Testfläche NO.
Kapitel 10: Datenauswertung

Die Regressionskurve in Abbildung 14 (durch eine kubischen Funktion berechnet) zeigt, über alle Baumarten, die Abhängigkeit des Volumens vom Bestandesalter.

\[W = A \left(1 - e^{-kt}\right) \]

wobei t das Alter als Wachstumsfaktor, A eine Wachstumsgröße als maximaler Endertrag und k die Wachstumsgeschwindigkeit darstellen. Diese Funktion besitzt keinen Wendepunkt und wird zur Beschreibung des Wachstumsverlaufes für besonders rasch- oder langsamwüchsige Baumarten verwendet.

Die Baumartenzusammensetzung bestimmt den Hektarvorrat ebenso wesentlich mit, denn auch auf vergleichsfähigem Standort, bei ähnlicher Durchforstung und im gleichen Alter weisen verschiedene Baumarten einen sehr unterschiedlich hohen Holzvorrat auf (KRAMER 1988).
Kapitel 10: Datenauswertung

Bestockungsgrad

Bestockungsgrad

Volumen [Vfm/h a]

Abbildung 15: Zusammenhang zwischen Bestockungsgrad und Bestandesvolumen*

Abbildung 16: Zusammenhang zwischen Bestockungsgrad und Alter*

*Jeder Strahl in den Abbildungen entspricht 10 Beständen. Per Definition müssen Waldbestände einen Bestockungsgrad >3/10 aufweisen.

Abbildung 15 zeigt, dass auch ein Zusammenhang zwischen Bestockungsgrad und Bestandesvolumen besteht. Obwohl der Bestockungsgrad kein absolutes Maß für die Bestandesdichte ist, steigt bei zunehmendem Bestockungsgrad auch der Holzvorrat, jedenfalls gibt es bei bestimmten Bestockungsgraden einen bestimmten Holzvorrat, der nicht überschritten wird.

Eine gegenseitige Abhängigkeit von Bestockungsgrad und Alter konnte kaum festgestellt werden (Abbildung 16). Die Grafik zeigt, dass Bestände mit sehr hohem Alter nicht tendenziell geringere Bestockungsgrade aufweisen, was durch Zerfallserscheinungen durchaus möglich wäre. Die Auflichtung dieser Bestände ist also unwesentlich und daher sollte sich auch der Einfluss von Boden bzw. von Bodenvegetation auf die Reflexionseigenschaften in Grenzen halten.
10.2 Signaturanalyse

10.2.1 Zusammenhang von Bestandesparametern mit der Reflexion in den Landsat 7-Kanälen

Die Signaturanalyse sollte aufzeigen, wie gut sich die wichtigsten Bestandesparameter (Volumen, Baumart, Alter) aus den Grauwerten (DN : Digital Number) der einzelnen Kanäle von Landsat 7 erklären lassen und welche Spektralbereiche für welche Bestandeseigenschaften am aussagekräftigsten sind.

Dabei kristallisierte sich bald heraus, dass die Kanäle im nahen Infrarot (ETM 4), im mittleren Infrarot (ETM 5) sowie der panchromatische Kanal jeweils die größte Erklärungskraft besaßen. Die Ergebnisse des NDVI waren oft ebenfalls gut.

Stellvertretend für alle vier Testflächen werden ausgewählte Ergebnisse der nordöstlichen Testfläche (NO), welche auch als „Trainingsfläche“ für die Klassifizierung verwendet wird, dargestellt. Die übrigen Testflächen lieferten sehr ähnliche Ergebnisse, die Zusammenhänge waren teils besser, teils schlechter als folgend angeführt.

10.2.1.1 Volumen

Da ein Ziel der Auswertungen die Bestimmung von mehreren Volumsklassen innerhalb des Waldes ist, wurde die Abhängigkeit des Bestandesvolumens von den Grauwerten der verschiedenen Kanäle untersucht. Dabei sind sowohl die Straffheit als auch die ungefähre Form des Zusammenhanges von Interesse.

Kapitel 10: Datenauswertung

Testfläche NO

Abbildung 17: Abhängigkeit des Bestandesvolumens von den Grauwerten im Kanal ETM 4 (NIR)

\[V = 789,8 - 14,58 \text{ ETM}4 + 0,07 \text{ ETM}4^2 \]
\[r^2 = 0,663 \]

Testfläche NO

Abbildung 18: Abhängigkeit des Bestandesvolumens von den Grauwerten im Kanal ETM 5 (MIR)

\[V = 924,5 - 21,74 \text{ ETM}5 + 0,13 \text{ ETM}5^2 \]
\[r^2 = 0,622 \]
Der panchromatische Kanal (ETM 8) übertrifft im Bestimmtheitsmaß \((r^2)\) der Regressionsfunktion sowohl ETM 4 als auch ETM 5 (Abbildung 19).

Abbildung 20 zeigt das Bestandesvolumen in Abhängigkeit vom (skalierten) NDVI. Die Regressionsfunktion ähnelt in ihrer Form hier eher einer Geraden, liefert aber nicht wesentlich bessere Ergebnisse als die vorher angesprochenen Kanäle.

10.2.1.2 Baumart

Kapitel 10: Datenauswertung

Je höher der Anteil an Nadelholz in den Beständen ist, desto niedriger sind die Grauwerte. ETM 4 (NIR) zeigt einen guten Zusammenhang (Abbildung 21), aber auch der NDVI erweist sich hier als aussagekräftig (Abbildung 22).

10.2.1.3 Einfluss der Baumart auf den Zusammenhang zwischen Bestandesvolumen und Signatur

Für die Kanäle ETM 4 und ETM 5 gilt, dass sich hohes Bestandesvolumen in niedrigen Grauwerten äußert, ebenso sinken die Grauwerte bei zunehmendem Nadelholzanteil (Abbildung 21).

Um die Überlagerung dieses Effektes darzustellen, wird die selbe Darstellung mit vier nach Baumarten zusammensetzten gebildeten Bestandestypen (Kapitel 9.2.2) wiederholt (Abbildung 24).

Auch wenn die Standardabweichung der Grauwerte in den Volumsklassen für die einzelnen Bestandstypen ähnlich groß bleibt, so zeigt Abbildung 24, dass in ein und derselben Volumsklasse die Grauwerte je nach Baumarten zusammensetzung stark schwanken.

![Abbildung 23: Mittelwerte und Standardabweichung der Volumsklassen in Kanal ETM 4](image1)

![Abbildung 24: Mittelwerte und Standardabweichung der Volumsklassen in Kanal ETM 4, getrennt nach Baumarten zusammensetzung](image2)
Kapitel 10: Datenauswertung

Abbildung 25: Mittelwerte und Standardabweichung der Volumsklassen in Kanal ETM 5 (MIR)

Abbildung 26: Mittelwerte und Standardabweichung der Volumsklassen in Kanal ETM 5 (MIR), getrennt nach Baumartenzusammensetzung

Abbildung 27 zeigt den selben Zusammenhang mit den einzelnen Beständen der Testfläche NO dargestellt. Wenn alle Beständen des westlichen Satellitenbildes betrachtet werden, zeigt sich eine Trennung nach Baumartenzusammensetzung der Bestände noch deutlicher (Abbildung 28).

Abbildung 27: Zusammenhang zwischen Bestandesvolumen und Grauwerten in Kanal ETM 4 für die Bestände der Testfläche NO, getrennt nach Baumartenzusammensetzung

Abbildung 28: Zusammenhang zwischen Bestandesvolumen und Grauwerten in Kanal ETM 4 für die Bestände der Testflächen NW und SW, getrennt nach Baumartenzusammensetzung

Kapitel 10: Datenauswertung

10.2.1.4 Alter

Abbildung 29: Abhängigkeit des mittleren Bestandesalters von den Grauwerten in Kanal ETM 4 (NIR)

Abbildung 30: Abhängigkeit des mittleren Bestandesalters vom NDVI (skaliert).

10.2.2 Scatterplot-Analyse

Die Klassen, nach denen die Testflächen später klassifiziert werden sollten, wurden als „Scatterplots“ im zweidimensionalen Merkmalsraum dargestellt, um Aussagen über die Art der Trennbarkeit der verschiedenen Klassen zu erhalten.

Neben der „klassischen“ Kombination ETM 3 zu ETM 4 werden auch Kanalkombinationen unter Einbeziehung der Kanäle des mittleren Infrarot ETM 5 und ETM 7 vorgestellt.
10.2.2.1 Baumart

Abbildung 31: Bestandestypen im Merkmalsraum ETM 3 (rot) zu ETM 4 (NIR)

Abbildung 32: Bestandestypen im Merkmalsraum ETM 4 (NIR) zu ETM 5 (MIR)

Abbildung 33: Bestandestypen im Merkmalsraum ETM 3 (rot) zu ETM 7 (MIR)

Die Kombination der Kanäle ETM 4 zu ETM 5 (Abbildung 32) zeigt ebenso wie die restlichen Kombinationen der Kanäle des Infraroten untereinander oder zwischen den Kanäle ETM 1, ETM 2 und ETM 3 starke Korrelationen. Günstiger ist die Kombination von Kanälen im sichtbaren Bereich mit solchen im infraroten Bereich (Abbildung 33).
10.2.2.2 **Volumsklassen**

Abbildung 34: Volumsklassen im Merkmalsraum ETM 3 (rot) zu ETM 4 (NIR)

Abbildung 35: Volumsklassen im Merkmalsraum ETM 4 (NIR) zu ETM 5 (MIR)

Abbildung 36: Volumsklassen im Merkmalsraum ETM 3 (rot) zu ETM 7 (MIR)

Bezüglich Trennbarkeit in den verschiedenen Kanalkombinationen gilt hier dasselbe wie für die Baumartenunterscheidung. Die Interpretation wird durch die größere Anzahl von Klassen zudem weiter erschwert. **Abbildung 34** lässt eine Abfolge von hoher Reflexion sowohl in ETM 4 als auch in ETM 3 für niedere Volumen, über hohe Reflexion in ETM 4 und geringerer in ETM 3 bei mittleren Volumsklassen, bis hin zu niedriger Reflexion in
Kapitel 10: Datenauswertung

ETM 3 und ETM 4 für volumsreiche Bestände erkennen. Deutlich wird auch die Schwierigkeit der Trennung der höheren Volumsklassen mit über 200 Vfm/ha.

10.2.3 Einfluss von Vorverarbeitung und Datenaufbereitung

10.2.3.1 Selektion der Bestände

Um die Wirksamkeit der Durchsicht und Auswahl der einzelnen Bestände (gemäß Kapitel 9.2.1) zu testen, wurden die von der Auswertung ausgeschlossenen mit den verwendeten Beständen verglichen. Dabei zeigte sich, dass sich der Zusammenhang zwischen Bestandesparametern und den Grauwerten der ETM-Kanäle signifikant verbesserte (Abbildung 37).

Abbildung 37: Gegenüberstellung der verwendeten und der nicht verwendeten Bestände.

Ein Großteil der sich in Abbildung 37 rechts oben befindlichen Ausreißer entsteht dadurch, dass in Beständen oder Teilen davon Kahlschläge gemacht wurden, die eine hohe Reflexion im nahen Infrarot (ETM 4) zeigen, der Datensatz jedoch die unpassenden, nicht mehr aktuellen Attribute (hohe Volumenswerte) enthält.
Kapitel 10: Datenauswertung

In den übrigen Kanälen ist der Effekt ganz ähnlich (Abbildung 38), für einzelne Baumartengruppen zeigt er sich noch deutlicher (Abbildung 39).

Abbildung 38: Zusammenhang zwischen den Grauwerten des panchromatischen Kanals (ETM 8) und dem Bestandesvolumen.

Die Bearbeitung der Datengrundlage wirkt nicht nur auf den Zusammenhang zwischen Grauwerten der einzelnen Spektralkanäle und Bestandesvolumen, sondern auch auf Parametern wie Bestandesalter oder Baumartenanteile günstig.

10.2.3.2 Luftlichtkorrektur

Die Luftlichtkorrektur soll den störenden Einfluß der Atmosphäre vermindern und verschiedene Satellitenbilder somit besser vergleichbar machen (Kapitel 9.1.2.6). Da die Testflächen auf zwei Satellitenbilder verteilt lagen, konnte der Einfluss dieses Vorverarbeitungsschrittes auf die Vergleichbarkeit der beiden Landsat-Szenen untersucht werden.

Die mittleren Grauwerte der Inventurinheiten wurden, nach Satellitenbild getrennt, vor und nach dem Abzug des geschätzten Luftlichtanteiles verglichen. Dabei wird von der Annahme ausgegangen, dass die Testflächen dieselbe Landbedeckung (Wald) besitzen und die Reflexionscharakteristik (Grauwerte) beider Teile sich daher angleichen sollte.

Ein Vergleich im Merkmalsraum ETM 3 (rot) zu ETM 4 (NIR) zeigt jedoch, dass sich die Punktewolken voneinander wegbewegen und nicht aufeinander zu, der gewünschte Effekt also nicht eingetreten ist (Abbildung 40 und Abbildung 41).
Die absolute Verschiebung der zwei Punktwolken ist durch den Abzug des Luftlichtanteils bedingt, die relative Verschiebung zueinander durch den unterschiedlichen Betrag dieser Größe für das östliche bzw. das westliche Satellitenbild.

Der gleiche Effekt zeigt sich beim Vergleich der Mittelwerte einzelner Bestandestypen (in diesem Fall handelt es sich sicher um die gleiche Landbedeckungsklasse). **Tabelle 23** zeigt den Vergleich einer Auswahl von Mittelwerten von zwei Testflächen, von denen sich eine (SO) auf dem östlichen, die andere (SW) auf dem westlichen Satellitenbild befindet.

<table>
<thead>
<tr>
<th>Nadelholzreinbestände</th>
<th>Orginalgrauwerte</th>
<th>Grauwerte nach der Luftlichtkorrektur</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETM 1</td>
<td>61,3</td>
<td>11,3</td>
</tr>
<tr>
<td>ETM 3</td>
<td>31,4</td>
<td>11,4</td>
</tr>
<tr>
<td>ETM 4</td>
<td>64,6</td>
<td>54,6</td>
</tr>
</tbody>
</table>

Tabelle 23: Vergleich der mittleren Grauwerte von reinen Nadelholzbeständen (Anteil ≥ 9/10) in verschiedenen Kanälen vor und nach der Luftlichtkorrektur.

Auch diese Überprüfung zeigte einen anderen Trend als erwartet, der Unterschied in den einzelnen Kanälen wurde größer.

Da die zwei Satellitenszenen am Rand einen schmalen Überlappungsbereich besitzen, war es möglich, den Effekt an ein und demselben „Objekt“ - an einem Geländeausschnitt, der auf beiden Bildern vorhanden ist - zu testen und Unsicherheiten am obigen Vergleich (Landbedeckung, Topographie) vermeiden zu können. Ein aussagekräftiger Vergleich war möglich, da die Aufnahmen im Abstand von nur zwei Tagen gemacht wurden und folglich der Zustand am Boden als unverändert angenommen werden kann.

Eine einfache Luftlichtkorrektur durch eine Dark Object Subtraction, auch wenn sie gewissenhaft durchgeführt wird, steigert die Vergleichbarkeit von Bilddaten also nicht in jedem Falle.

10.3 Texturanalyse

Die Texturanalyse ging der Frage nach, ob und auf welche Weise die im Satellitenbild erkennbare Textur der Inventurinheiten mit den Bestandesparametern Baumartenzusammensetzung und Volumen zusammenhängt. Dazu wurden verschiedene Texturparameter für die jeweilige Klasseneinteilung berechnet und deren Unterstützung für eine Trennbarkeit dieser Klassen analysiert.

In eCognition® besteht die Möglichkeit, die Textur von Objekten durch Eigenschaften der jeweiligen Unterobjekte zu beschreiben (Kapitel 6.2). Die Textur kann über spektrale Information der einzelnen Bildkanäle oder über die Form der Unterobjekte beschrieben werden.
Für eine Texturanalyse nach spektralen Merkmalen stehen folgende Parameter zur Verfügung (ECOGNITION HANDBUCH 2001):

- Standardabweichung der mittleren Grauwerte der Unterobjekte (Mean of SO: StdDev): Diese wird zwar, je kleiner die Unterobjekte werden, der Standardabweichung der einzelnen Pixel (ein ebenfalls abrufbarer Parameter) immer ähnlicher, doch wird in diesem Fall - eine entsprechende Segmentierung vorausgesetzt - die Standardabweichung für homogene und bedeutungsvolle Flächen berechnet.

Texturparameter, die sich auf die Form der Unterobjekte beziehen, sind Mittelwerte sowie Standardabweichung der Formparameter:
- „area“, „density“, „asymmetry“ und „direction“ der Unterobjekte.

10.3.1 Vorgehensweise

Die Schaffung einer geeigneten Ebene von Unterobjekten ist Voraussetzung dafür, bedeutungsvolle Texturparameter zu erhalten. Daher wurde unter der Objektebene, welche der Bestandesabgrenzung der Forstinventur entsprach, eine möglichst aussagekräftige Unterebene geschaffen.

Durch die Segmentierung werden innerhalb der einzelnen Bestände homogene Bereiche gebildet, die einerseits von der Struktur des Waldes beeinflusst werden, andererseits von der Wahl verschiedener Segmentierungsparameter (Gewichtung der einzelnen Kanäle, Zusammensetzung des Homgenitätskriteriums aus Farb- und Formmerkmalen) abhängen. Die Wahl der Parameter ist entscheidend für die mittlere Größe und die Form der Segmente.

Bei der Bildung der Unterobjekte wurde von folgenden Überlegungen ausgegangen, welche die Wahl der Segmentierungsparameter bestimmten.

Die Segmente sollten möglichst klein sein, um die Waldstruktur gut erfassen zu können. Aufgrund der beschränkten geometrischen Auflösung der Landsat-Daten (30 m x 30 m bzw. 15 m x 15 m im panchromatischen Kanal ETM 8) können zwar einzelne Bäume oder kleine Bestandeslücken nicht erkannt werden, allerdings sollte eine durch größere Baumgruppen gebildete Struktur identifizierbar sein. Da der Wald im Bereich des Untersuchungsgebietes großflächig bewirtschaftet wird und meist aus Naturverjüngung ohne waldbauliche Pflege aufwächst, ist eine Tendenz zu größeren Baumgruppen anzunehmen.

Die Segmentierung sollte aber Objekte bilden, die mehrere Pixel umfassen, da die Information über einzelne Bildelemente ebenfalls zur Verfügung steht und erst eine gewisse Segmentgröße einen Spielraum bei der Objektform möglich macht.

Im Segmentierungsvorgang wurde der panchromatische Kanal (ETM 8) deutlich höher gewichtet als alle übrigen Kanäle, da er eine höhere geometrische Auflösung bietet. Nur
Kapitel 10: Datenauswertung

durch diese hohe Gewichtung kann eine sinnvolle Abgrenzung kleiner Segmente erfolgen, welche die größeren Bildelemente der multispektralen Kanäle unterteilt. Neben dem Vorteil der geometrischen Auflösung und der damit verbundenen - jedenfalls angenommenen - höheren Aussagekraft für die Texturanalyse besitzt ETM 8 auch Sensitivität bezüglich Baumart und Volumen (Abbildung 19). Die restlichen Kanäle wurden jedoch nicht völlig weggelassen, da sie bedeutende Information bezüglich Baumart und Volumen (ETM 4, ETM 5) und vegetationsarmen bzw. vegetationslosen Flächen (ETM 3, ETM 2) enthalten und somit für eine sinnvolle Segmentierung unverzichtbar sind. Bei den Überlegungen zur Gewichtung der Formparameter war klar, dass die Form der Unterobjekte in vorliegenden Fall nur eingeschränkt einsetzbar sein würde. Einerseits wird mit sehr kleinen Segmenten gearbeitet, andererseits kann Baumgruppen innerhalb von Beständen keine bestimmte Form unterstellt werden.

Es wurden verschiedene Segmentierungen mit unterschiedlichen Kombinationen von Parametern und Kanalgewichten durchgeführt, wobei das Ergebnis jeweils visuell geprüft wurde. Tabelle 24 zeigt die Segmentierungsparameter des ansprechendsten Ergebnisses (Abbildung 44), welches den Anschein macht, die Strukturen innerhalb von Beständen recht gut erfassen zu können.

<table>
<thead>
<tr>
<th>Image Layers</th>
<th>Weights</th>
<th>Composition of Homogeneity Criterion</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETM 1</td>
<td>0,5</td>
<td>Scale Parameter: 2,5</td>
</tr>
<tr>
<td>ETM 2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ETM 3</td>
<td>2</td>
<td>Criterion Color: 0,9</td>
</tr>
<tr>
<td>ETM 4</td>
<td>2</td>
<td>Criterion Shape: 0,1</td>
</tr>
<tr>
<td>ETM 5</td>
<td>2</td>
<td>Criterion Smoothness: 0,9</td>
</tr>
<tr>
<td>ETM 6</td>
<td>1</td>
<td>Criterion Compactness: 0,1</td>
</tr>
<tr>
<td>ETM 7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ETM 8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>NDVI</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ETM5/ETM2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 24: Segmentierungsparameter in eCognition mit den gewählten Einstellungen für die Bildung der Unterebene für die Texturanalyse.

Die Größe der resultierenden Unterobjekte lag in den vier Testflächen zwischen 1470 m² (SO) und 1880 m² (SW), was einer Anzahl von 6,5 bis 8,4 Bildelementen des panchromatischen Kanals entspricht.

Bei Versuchen mit einem höheren Scale Parameter, was die mittlere Objektgröße steigert, wurde zwar die Form der Objekte vielfältiger und auch die Größendifferenzen zwischen Objekten deutlicher, doch stellte sich die Frage, ob damit noch Textur innerhalb von Beständen angesprochen werden kann.

10.3.2 Ergebnisse

Es wurden sämtliche Texturparameter für die Klasseneinteilungen nach Baumarten zusammensetzung (4 Klassen) und Holzvorrat (9 Klassen) berechnet und der Einfluss auf die Identifizierbarkeit dieser Klassen untersucht. Dazu wurden Tabellen mit statistischen Parametern und graphische Darstellungsmöglichkeiten in eCognition® (Histogrammvergleiche der einzelnen Klassen) verwendet.
Kapitel 10: Datenauswertung

10.3.2.1 Baumartenzusammensetzung

Die Hypothese, dass Texturmerkmale die Identifizierung von Mischbeständen bzw. der Baumartenzusammensetzung unterstützen, konnte nicht bestätigt werden.

Die „mittleren Differenz der Grauwerte zu den Nachbarobjekten“, machte keine Trennung von Misch- und Reinbeständen bzw. Laub- und Nadelholzbeständen möglich. Die Annahme, dass dieser Parameter brauchbar sein könnte, weil Mischbestände aus hellen (LH) und dunklen (NH) Objekten (Segmenten) nebeneinander bestehen, traf nicht zu. Es zeigte sich bloß eine leichte Abfolge vom Laubwald zum Nadelwald, die in ETM 4 (NIR) und ETM 8 (pan) am deutlichsten war (Tabelle 25).

<table>
<thead>
<tr>
<th>Bestandestyp</th>
<th>Mittlere durchschnittliche Differenz zu den Nachbarobjekten in ETM 4</th>
<th>Mittlere durchschnittliche Differenz zu den Nachbarobjekten in ETM 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>4,97</td>
<td>3,73</td>
</tr>
<tr>
<td>LHm</td>
<td>5,09</td>
<td>3,71</td>
</tr>
<tr>
<td>NHm</td>
<td>4,61</td>
<td>3,38</td>
</tr>
<tr>
<td>NH</td>
<td>4,14</td>
<td>3,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bestandestyp</th>
<th>Mittlere Standardabweichung der Unterobjekte in ETM 4</th>
<th>Standardabweichung</th>
<th>Mittlere Standardabweichung der Unterobjekte in ETM 8</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>8,62</td>
<td>3,97</td>
<td>5,37</td>
<td>2,18</td>
</tr>
<tr>
<td>LHm</td>
<td>8,55</td>
<td>4,06</td>
<td>5,27</td>
<td>2,14</td>
</tr>
<tr>
<td>NHm</td>
<td>7,49</td>
<td>3,99</td>
<td>4,71</td>
<td>2,22</td>
</tr>
<tr>
<td>NH</td>
<td>7,07</td>
<td>4,22</td>
<td>4,44</td>
<td>2,36</td>
</tr>
</tbody>
</table>

Tabelle 26: Texturparameter „Mittlere Standardabweichung der Unterobjekte“ (Mean of SO: StdDev) in ETM 4 (NIR) und ETM 8 (pan) sowie deren Standardabweichungen. Für 4 Baumartengruppen in der Testfläche NO berechnet.

Die deutlichsten Abfolgen zeigten sich, wie zu erwarten war, im nahen Infrarot (ETM 4) und im panchromatischen Kanal (ETM 8). In den übrigen Kanälen war der Zusammenhang schwächer oder gar nicht zu erkennen.

Auch die Formeigenschaften der Unterobjekte konnten keine wesentliche Hilfe zur Unterscheidung der Bestände nach Baumartenzusammensetzung liefern. Die Annahme, dass die gebildeten Objekte in Mischbeständen kleiner bzw. unregelmäßiger sind, da diese
Bestände strukturiertener sind, traf nicht zu. Die mittlere Fläche der Unterobjekte war in nadelholzdominierten Beständen höher als in laubholzdominierten. Allerdings ist dies wohl weniger auf die Struktureigenschaften der Bestände zurückzuführen als auf den Segmentierungsalgorithmus. Obwohl im Farb-Heterogenitätskriterium zur Segmentierung, welches neben Formparametern und Gewichtungen die Objektgröße und Objektform bestimmt (Tabelle 24), nur die Standardabweichung der Grauwerte innerhalb der Objekte berücksichtigt wird, nicht aber die absoluten Werte, wurden - jedenfalls unter den vorliegenden Verhältnissen - in helleren Bereichen tendenziell kleinere Objekte erstellt als in Bereichen mit niedrigeren Grauwerten.

10.3.2.2 Bestandesvolumen
Der Beitrag der Texturparameter zur Unterscheidbarkeit von Volumsklassen war ebenfalls gering. Bei einigen Parametern waren zwar leichte Abfolgen zu erkennen, doch waren sie für eine Trennung der einzelnen Volumsklassen nur eingeschränkt brauchbar, da die Standardabweichung innerhalb der Klassen um ein Vielfaches höher war als die Differenz zwischen den Klassen und somit der Überlappungsbereich der Klassen groß.

<table>
<thead>
<tr>
<th>Volumsklassen</th>
<th>Mittlere Standardabweichung der Unterobjekte in ETM 4</th>
<th>Standardabweichung</th>
<th>Mittlere Standardabweichung der Unterobjekte in ETM 8</th>
<th>Standardabweichung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Vfm/ha</td>
<td>11,80</td>
<td>4,66</td>
<td>6,87</td>
<td>2,73</td>
</tr>
<tr>
<td>1-20 Vfm/ha</td>
<td>12,09</td>
<td>3,45</td>
<td>7,18</td>
<td>1,66</td>
</tr>
<tr>
<td>21-50 Vfm/ha</td>
<td>9,96</td>
<td>2,83</td>
<td>5,99</td>
<td>1,54</td>
</tr>
<tr>
<td>51-100 Vfm/ha</td>
<td>9,58</td>
<td>3,79</td>
<td>5,94</td>
<td>2,08</td>
</tr>
<tr>
<td>101-150 Vfm/ha</td>
<td>8,60</td>
<td>3,94</td>
<td>5,23</td>
<td>2,15</td>
</tr>
<tr>
<td>151-200 Vfm/ha</td>
<td>7,07</td>
<td>3,58</td>
<td>4,46</td>
<td>1,85</td>
</tr>
<tr>
<td>201-250 Vfm/ha</td>
<td>6,76</td>
<td>3,96</td>
<td>4,28</td>
<td>2,20</td>
</tr>
<tr>
<td>251-300 Vfm/ha</td>
<td>6,16</td>
<td>3,85</td>
<td>4,02</td>
<td>2,23</td>
</tr>
<tr>
<td>>300 Vfm/ha</td>
<td>5,70</td>
<td>3,33</td>
<td>3,81</td>
<td>2,12</td>
</tr>
</tbody>
</table>

Tabelle 27: Der Texturparameter „Mittlere Standardabweichung der Unterobjekte“ (Mean of SO: StdDev) in ETM 4 (NIR) und ETM 8 (pan), mitsamt dessen Standardabweichung. Berechnet für 9 Volumsklassen in der Testfläche NO.

Auch der Parameter „Mittlere durchschnittliche Differenz zu Nachbarobjekten“ war im nahen Infrarot (ETM 4) und im panchromatischen Kanal (ETM 8) am deutlichsten und zeigte ähnliche Abfolgen wie Tabelle 27. In den restlichen Kanälen war die Abfolge nicht so eindeutig; auch zeigten die übrigen Testflächen nicht immer so deutliche Ergebnisse.

10.3.3 Zusammenfassung

Die Texturanalyse anhand von Unterobjekten konnte für die vorliegende Fragestellung (Differenzierungen innerhalb des Waldes) und bei den vorliegenden Daten (Landsat 7) nicht zu einer Verbesserung des Klassifizierungsergebnisses beitragen.

Auch wenn Abfolgen einiger Texturparameter erkennbar waren, so war ihre Aussagekraft durch die starke Streuung innerhalb der einzelnen Klassen eingeschränkt. Jedenfalls konnten sie die Klassifizierung nicht bereichern, da sie über die durch spektrale Merkmale erkennbaren Bestände hinaus keine zusätzliche Information lieferten.

11 Klassifizierung

11.1 Methodik der Klassifizierung

Für eine Klassifizierung stehen im Prinzip zwei Methodengruppen zur Auswahl: statistische Methoden und wissensbasierte Methoden.

Von den vier zur Verfügung stehenden Testflächen wurden zwei zur Erarbeitung der Klassifikationsalgorithmen und zwei für den Test der Klassifizierungen ausgewählt. Da die vier Flächen auf zwei Satellitenbilder verteilt gelegen waren, wurde je Landsat-Szene eine Testfläche als Trainingsdatensatz benutzt (Testfläche NW bzw. NO) und die andere Fläche (Testfläche SW bzw. SO) für den Test der Klassifizierung und eine Genauigkeitsanalyse durch die Referenzdaten verwendet (Abbildung 45).

Durch diese Anordnung wurde der Einfluss auf die Klassifizierung, der sich aus der unterschiedlichen Aufnahmesituation der beiden Satellitenbilder (z.B. atmosphärische Verhältnisse) ergibt, ausgeschaltet. Die radiometrische Angleichung zwischen den zwei Landsat-Szenen übt so keinen Einfluss auf das Klassifizierungsergebnis aus. Das Klassifizierungssystem ist zudem so gewählt, dass es eine strikte Trennung zwischen Trainingsgebieten und Evaluierungsgebieten gibt.
Abbildung 45: Übersicht über die vier Testflächen (gelb umrandet) sowie die Satellitenbilddausschnitte bzw. die Abdeckung der eCognition-Projekte (grau umrandet).

Da die Klassifizierung nach Baumartenzusammensetzung und Volumen jeweils zwei Mal, einmal für die östlichen und einmal für die westlichen Testgebiete, durchgeführt wurde, können detailliertere Aussagen über die Stabilität der Klassifizierung bzw. die erreichbaren Genauigkeiten gemacht werden. Ebenso wird es dadurch möglich, lokale Eigenheiten einzelner Testflächen (z.B. im Waldaufbau) zum Teil auszuschalten.

Die Berechnung der Zugehörigkeitsfunktionen ist in eCognition® automatisiert möglich. Die Form der Funktionen kann durch die Wahl verschiedener Parameter, die sich auf statistische Kennzahlen der Verteilung (Mittelwert, minimale und maximale Werte) beziehen, gesteuert werden.

Die Zugehörigkeitsfunktionen der einzelnen Spektralkanäle einer Klasse werden durch Operatoren miteinander verknüpft. Die Einzelunterstützungswerte aller Funktionen können multiplikativ verknüpft werden (Operator: and (*)), es kann der maximale (or (max)), oder der minimale Wert (and (min)) die Klassenzugehörigkeit entscheiden, sowie das arithmetische (mean (arithm.)) oder das geometrische Mittel (mean (geo.)) aller Funktionen für die Klassenzuweisung herangezogen werden.

- Funktionen für Klassen am Rand der Spektralverteilung (z.B. „Kahlflächen“) wurden über die Grenzwerte der Beispielsflächen hinaus (gegen das Ende des Wertebereiches

Abbildung 46: Spektralverteilung in den Kanälen ETM 2, ETM 3, ETM 4 (oben); dazu berechnete Membership-Funktionen (unten).
Kapitel 11: Klassifizierung

hin) erweitert, um die Zahl der unklassifizierten Bildobjekte so gering wie möglich zu halten.

- Standen für eine Klasse unverhältnismäßig wenig Trainingsdaten zur Verfügung, wurde deren Bereich, immer unter Beachtung der Nachbarklassen, verbreitert. Dadurch wird die Wahrscheinlichkeit einer Zuweisung in eine bestimmte Klasse nicht von der Anzahl an Trainingsbeständen beeinflusst und die Klassenzugehörigkeitswerte fallen nicht zu stark ab bzw. tendieren nicht gegen Null, wenn Lücken in der spektralen Abfolge zwischen Klassen auftreten.

- Wenn offensichtliche Ausreißer in einer Klasse die Funktionen deutlich in eine Richtung verschoben, wurde deren Form berichtigt.

Die beschriebene Vorgehensweise wurde auch in Hinblick auf die alternativen Möglichkeiten gewählt:
Eine allein automatisierte Erstellung anhand von Trainingsdaten ohne Veränderungen macht eine detaillierte Auswahl der Trainingsflächen bezüglich Repräsentativität der Klasse erforderlich. Zudem ist bei einer derartigen Vorgehensweise sicherlich eine andere Form der Klassifizierung (z.B. Nearest Neighbor, Maximum Likelihood) besser geeignet, die spektrale Information vollständig zu erfassen.

Auch eine Vorgehensweise, bei der allein aus Expertenwissen ein Regelsystem abgeleitet wird, erschien nicht optimal. Die Umsetzung von bekannten bzw. ermittelten Zusammenhängen würde in Form von simplen Schwellenwerten oder einfachen Funktionsformen (Normalverteilung) erfolgen, was die Möglichkeiten der auf Fuzzy-Logik aufgebauten Klassifizierung mit Zugehörigkeitsfunktionen beliebiger Form nicht voll ausnutzt und die Form der Spektralverteilung innerhalb der Klassen nicht nachbildet.

11.2 Methodik der Genauigkeitsanalyse

Zur Evaluierung der Güte der Klassifizierung wurden die Ergebnisse mit den Daten der Forstinventur, welche als Referenz (ground truth) dienten, verglichen. Die tatsächlichen Verhältnisse am Boden können zwar von den Referenzdaten abweichen (durch Veränderungen zwischen dem Aufnahmezeitpunkt des Satellitenbildes und dem der Bestandesparameter; zudem beinhalten auch die Werte der Referenzdaten gewisse Ungenauigkeiten), dieser Fehler wird allerdings nicht berücksichtigt.

Zur Darstellung der Klassifizierungsgenauigkeiten wurden jeweils eine Fehlermatrix (auch Konfusionsmatrix genannt), der κ-Koeffizient und ein gewichteter κ-Koeffizient (κw) herangezogen.

klassifizierten Bildenelemente (die sich in der Hauptdiagonalen von oben links nach rechts unten befinden) durch die Summe aller Pixel berechnet.

Für die Genauigkeit einzelner Klassen stehen zwei Maßzahlen zur Verfügung. Die *Producer’s accuracy* (*Klassifizierungsgenauigkeit aus der Sicht des Kartenherstellers*), errechnet sich aus Division der korrekt klassifizierten Elemente durch die Spaltensumme. Sie zeigt an, wieviel Prozent einer Referenzklasse richtig dieser Klasse zugewiesen wurden. Die *User’s accuracy* (*Klassifizierungsgenauigkeit aus Nutzersicht*) dividiert die richtig klassifizierten Elemente durch die Zeilensumme. Sie zeigt die Wahrscheinlichkeit an, dass ein Element, welches einer Klasse zugewiesen wurde, auch in Wirklichkeit dieser Klasse angehört (LILLESAND UND KIEFER 2000).

Der Wertebereich des κ-Koeffizienten liegt im Bereich zwischen 0 und 1. Dabei bedeutet 0, dass die Güte der Klassifizierung einer durch Zufall erstellten Zuweisung entspricht und 1, dass die Klassifizierung vollständig korrekt ist. Der κ-Koeffizient kann ausgedrückt werden als:

\[
κ = \frac{P_b - P_0}{1 - P_0}
\]

\[P_b: \text{beobachtete Übereinstimmung (Wahrscheinlichkeiten)}\]

\[P_0: \text{zufällige Übereinstimmung (Wahrscheinlichkeiten)}\]

Der gewichtete κ-Koeffizient κ_\text{w} (COHEN 1968) ist eine Modifikation, welche bevorzugt für Ordinalskalen verwendet wird und auch die Art der Fehlklassifikationen berücksichtigt. Die dahintersteckende Idee ist, eine fehlerhafte Zuweisung in eine Nachbarklasse als nicht so falsch anzusehen wie Fehlklassifikationen in weit entfernten Klassen.

Die Gewichte in den einzelnen Klassen können nach bestimmten Regeln vergeben werden, wobei allgemein gilt, dass die Gewichte in einer Matrix mit K Klassen (w_{jk}, j,k = 1,...,K) für w_{jj} = 1 und 0 \leq w_{jk} \leq 1, wobei benachbarte Kategorien mehr Gewicht erhalten als weit voneinander entfernte Klassen. Tabelle 28 zeigt die verwendete Gewichtsverteilung für eine Fehlerrmatrix für 5 Volumsklassen. Die Gewichte fließen jeweils in die Berechnung von p_b und p_0 ein (GONIN ET AL. 2000). Die verwendete Gewichtsverteilung folgt dem Vorschlag von FLEISS UND COHEN (1973):

\[w_{jk} = 1 - \frac{(j-k)^2}{(K-1)^2}\]

\[w_{jk} : \text{Gewicht in Spalte j, Zeile k}\]

K : Gesamtanzahl Klassen
Kapitel 11: Klassifizierung

11.3 Ergebnisse

11.3.1 Klassifizierung nach Baumartenzusammensetzung

11.3.1.1 Testfläche SW

Abbildung 47 vergleicht das Klassifikationsergebnis in der Testfläche SW mit den Verhältnissen der Referenzdaten, Tabelle 29 zeigt die dazugehörige Fehlermatrix.

Die Zugehörigkeitsfunktionen wurden aus der Testfläche NO auf Bestandesebene erstellt und in den Klassenbeschreibungen mit dem Operator $\text{and} (\text{min})$ verknüpft. Zur Klassifikation wurden bis auf den Ratiokanal ETM 5/ETM 2 alle Kanäle verwendet. Das Weglassen von weiteren Kanälen mit beschränkter Aussagekraft wie ETM 1 oder ETM 3 (aufgrund der Bildstörung, Abbildung 56) verschlechterte das Ergebnis geringfügig.
Kapitel 11: Klassifizierung

Abbildung 47: Gegenüberstellung der Klassifikation nach Baumartenzusammensetzung (oben) und den Referenzdaten (unten) für die Testfläche SW.

<table>
<thead>
<tr>
<th>Referenzdaten</th>
<th>LH</th>
<th>LHm</th>
<th>NHm</th>
<th>NH</th>
<th>Summe</th>
<th>User’s Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>172672</td>
<td>98957</td>
<td>17133</td>
<td>3043</td>
<td>291805</td>
<td>59%</td>
</tr>
<tr>
<td>LHm</td>
<td>48145</td>
<td>125699</td>
<td>29420</td>
<td>1932</td>
<td>205196</td>
<td>61%</td>
</tr>
<tr>
<td>NHm</td>
<td>0</td>
<td>3249</td>
<td>66549</td>
<td>27366</td>
<td>97164</td>
<td>68%</td>
</tr>
<tr>
<td>NH</td>
<td>0</td>
<td>3805</td>
<td>89193</td>
<td>119622</td>
<td>212620</td>
<td>56%</td>
</tr>
<tr>
<td>Summe</td>
<td>220817</td>
<td>231710</td>
<td>202295</td>
<td>151963</td>
<td>806785</td>
<td></td>
</tr>
<tr>
<td>Prod. Acc.</td>
<td>78%</td>
<td>54%</td>
<td>33%</td>
<td>79%</td>
<td>60,1%</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 29: Fehlermatrix, \(\kappa \) und \(\kappa_w \) für die Klassifikation nach Baumartengruppen in der Testfläche SW.

Insgesamt konnte die Klassifizierung die Baumartenverteilung gut erfassen. Fehlklassifizierungen traten hauptsächlich in benachbarten Klassen auf, was sich in einem hohen \(\kappa_w \) (0,80) niederschlägt. Eine Analyse der Genauigkeiten der einzelnen Klassen zeigt, dass der Anteil an richtig klassifizierten Beständen in reinen Laub- bzw. Nadelholzbeständen deutlich höher (ca. 80% Producer’s Acc.) als in Mischbeständen liegt.

11.3.1.2 Testfläche SO

In den Testflächen NO und SO wurde eine Abwandlung des beschriebene Verfahrens angewandt. Die spektrale Verteilung der Trainingsdaten (Testfläche NO) wurde nicht aus den Objekten, die den Inventureinheiten entsprachen, sondern aus den kleineren Objekten der Unterebene erstellt. Da jeweils die Mittelwerte von Objekten herangezogen werden (und nicht die Werte der einzelnen Pixel betrachtet werden), nehmen die Histogramme einen ausgeglichenen Verlauf an (Abbildung 48). Durch diese Vorgehensweise sollte die Form der spektralen Verteilung besser nachgebildet werden können.

Abbildung 48: Vergleich der Spektralverteilung von Bestandesmittelwerten (oben) und den Mittelwerten der Unterobjekte (unten).

Für die Klassifizierung der Testfläche SO wurden die Kanäle ETM 1 und der Ratiokanal ETM 5/ETM 2 ausgeschlossen, da sie das Ergebnis negativ beeinflussten. Die Parameter der Zugehörigkeitsfunktionen wurden abgewandelt, um diese Form der Histogramme besser erfassen zu können.

<table>
<thead>
<tr>
<th></th>
<th>LH</th>
<th>LHm</th>
<th>NHm</th>
<th>NH</th>
<th>Summe</th>
<th>User’s Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>162800</td>
<td>56916</td>
<td>16439</td>
<td>1457</td>
<td>237612</td>
<td>69%</td>
</tr>
<tr>
<td>LHm</td>
<td>47751</td>
<td>66117</td>
<td>60946</td>
<td>49064</td>
<td>223878</td>
<td>30%</td>
</tr>
<tr>
<td>NHm</td>
<td>1760</td>
<td>4886</td>
<td>44528</td>
<td>51509</td>
<td>102683</td>
<td>43%</td>
</tr>
<tr>
<td>NH</td>
<td>147</td>
<td>3635</td>
<td>19256</td>
<td>143193</td>
<td>166231</td>
<td>86%</td>
</tr>
<tr>
<td>Summe</td>
<td>212458</td>
<td>131554</td>
<td>141169</td>
<td>245223</td>
<td>730404</td>
<td></td>
</tr>
<tr>
<td>Prod. Acc.</td>
<td>77%</td>
<td>50%</td>
<td>32%</td>
<td>58%</td>
<td>57,0%</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 30: Fehlermatrix, κ und κw für die Klassifikation nach Baumartengruppen in der Testfläche SO.
Ein Problem, welches sich bei dieser Klassifikation zeigte, war die „Labilität“ der Klassifizierung. In mehreren Fällen besaßen Bestände den maximalen Zugehörigkeitswert (1,0) für mehr als eine Klasse bzw. der Unterschied im Zugehörigkeitsgrad zu den verschiedenen Klassen war minimal.

Zusätzlich zur Klassifizierung auf Bestandesebene wurde eine Klassifizierung der niedrigeren Objektebene durchgeführt. Die Frage war, ob sich deutliche Unterschiede zur bestandesweisen Klassifizierung (die mit spektralen Mittelwerten der Bestände arbeitet) zeigen und wie die Klassenzuweisung innerhalb von einzelnen Inventurinheiten erfolgt bzw. ob deren Heteorgenität das obige Problem erklärt.

Abbildung 49: Ausschnitt aus der Testfläche SO; Gegenüberstellung der Klassifikation der Objekte der Unterebene (links) und den Referenzdaten (rechts).

Abbildung 49 verdeutlicht einerseits, dass das Klassifizierungsergebnis in vielen Bereichen sehr gut ausfällt, Laubholz-Reinbestände, Nadelholz-Reinbestände und Kahlflächen meist richtig klassifiziert werden und auch Mischbestandsklassen oft richtig erkannt werden.

Aus diesen Gründen zeigte die Fehlermatrix, welche auf Grundlage der einzelnen Pixel berechnet wurde, bei den Klassifikationen auf der Unterebene durchwegs eine geringere Übereinstimmung mit den Referenzdaten als eine bestandesweise Klassifikation. Auch
beeinflusst in diesem Fall eine nicht exakte geometrische Übereinstimmung von Satellitenbild und GIS-Datensatz das Ergebnis der Fehlermatrix. Da solche Randeffekte und einzelne spektrale Ausreißer innerhalb von Beständen die Bestandesmittelwerte beeinflussen können, obwohl sie nur einen geringen Teil der Fläche ausmachen, wurde versucht, aus der Klassifikation der Unterobjekte eine Klassifikation auf Bestandesebene abzuleiten. In einem ersten Versuch wurde der Laubholzanteil (Mittelwert der Klassen) der Unterobjekte mit der jeweiligen Fläche gewichtet und daraus ein Laubholzanteil auf Bestandesebene errechnet. Da die Klassenzuweisung der sehr kleinen Unterobjekte aber streut (Abbildung 49, links), lieferte diese Berechnung auf Bestandesebene einen viel zu hohen Anteil an Mischbeständen. Mit einer Klassifikation der Bestände, die sich auf die relative Mehrheit der Unterobjekte pro Bestand bezieht, konnte hingegen das Ergebnis der ersten Klassifikation (Tabelle 30) verbessert werden (Tabelle 31, Abbildung 50).

Abbildung 50: Gegenüberstellung der Klassifikation nach Baumartenzusammensetzung (links) und den Referenzdaten (rechts) für die Testfläche SO.

<table>
<thead>
<tr>
<th>Referenzen</th>
<th>LH</th>
<th>LHm</th>
<th>NHm</th>
<th>NH</th>
<th>Summe</th>
<th>User's Acc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LH</td>
<td>172233</td>
<td>55737</td>
<td>13300</td>
<td>1445</td>
<td>242715</td>
<td>71%</td>
</tr>
<tr>
<td>LHm</td>
<td>39545</td>
<td>65927</td>
<td>65836</td>
<td>58030</td>
<td>229338</td>
<td>29%</td>
</tr>
<tr>
<td>NHm</td>
<td>2040</td>
<td>3885</td>
<td>28710</td>
<td>20273</td>
<td>54908</td>
<td>52%</td>
</tr>
<tr>
<td>NH</td>
<td>0</td>
<td>7114</td>
<td>31931</td>
<td>165585</td>
<td>204630</td>
<td>81%</td>
</tr>
<tr>
<td>Summe</td>
<td>213818</td>
<td>132663</td>
<td>139777</td>
<td>245333</td>
<td>731591</td>
<td></td>
</tr>
<tr>
<td>Prod. Acc.</td>
<td>81%</td>
<td>50%</td>
<td>21%</td>
<td>67%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 31: Fehlermatrix, \(\kappa \) und \(\kappa_w \) für die Klassifikation nach Baumartengruppen in der Testfläche SO; berechnet aus der Klassifizierung der Unterobjekte.
Kapitel 11: Klassifizierung

11.3.2 Klassifizierung nach Bestandesvolumen

Ausgangsbasis für die Klassifizierung war eine Einteilung in neun Volumsklassen: 0 Vfm/ha, 1-20 Vfm/ha, 21-50 Vfm/ha, 51-100 Vfm/ha, 101-150 Vfm/ha, 151-200 Vfm/ha, 201-250 Vfm/ha, 251-300 Vfm/ha und > 300 Vfm/ha. Obwohl klar war, dass eine derart feine Klasseneinteilung, vor allem in den hohen Volumsbereichen, nur schwer gute Klassifikationsgenauigkeiten liefern kann (Rückgang der Sensitivität der Landsat-Kanäle, Ungenauigkeit der Referenzdaten), wurde sie als Grundlage der Analysen verwendet.

11.3.2.1 Testfläche SW

Kapitel 11: Klassifizierung

und zudem vermieden werden sollte, dass Inventurinheiten für mehr als eine Klasse einen Zugehörigkeitswert von 1,0 erreichen können.

Abbildung 52: Gegenüberstellung der Klassifikation nach 9 Volumsklassen (oben) und den Referenzdaten (unten) für die Testfläche SW.

Abbildung 52 zeigt, dass die Tendenzen im Holzvorrat der Inventurinheiten gut erkannt wurden und die Klassifikation die Grenze zwischen den niedrigen Volumsklassen (im Südosten und in der Mitte) und den volumnreichen Beständen im Nordwesten scharf abbildete. Beim Vergleich ist zu bedenken, dass es sich hier um eine sehr detaillierte
Kapitel 11: Klassifizierung

Einteilung handelt und ein Fehler zwischen zwei Klassen (z.B. zwischen den Klassen 1-20 Vfm/ha und 21-50 Vfm/ha) nicht als gravierend angesehen werden kann.

Tabelle 32: Fehlermatrix, κ und κ_w für die Klassifikation nach 9 Volumsklassen in der Testfläche SW

Tabelle 33: Fehlermatrix, κ und κ_w für die Klassifikation nach den 5 zusammengefassten Volumsklassen in der Testfläche SW
Kapitel 11: Klassifizierung

Eine Unterscheidung der Waldes in fünf Klassen nach stehendem Holzvorrat gelingt in dieser Testfläche gut, die Gesamtgenauigkeit erreicht knapp 60 %, der K_w einen Wert von 0,83.

11.3.2.2 Testfläche SO

Auch in der Testfläche SO wurde unter Ausschaltung der Kanäle ETM 1, ETM 3 und ETM 2/ETM 5 als Ausgangsbasis eine Klassifizierung mit neun Klassen durchgeführt.

Abbildung 53: Gegenüberstellung der Klassifikation nach 9 Volumsklassen (links) und den Referenzdaten (rechts) für die Testfläche SO.

![Abbildung 53](image)

Tabelle 34: Fehlermatrix, κ und K_w für die Klassifikation nach 9 Volumsklassen in der Testfläche SO.

<table>
<thead>
<tr>
<th>Klasse [Vfm/ha]</th>
<th>0</th>
<th>1-20</th>
<th>21-50</th>
<th>51-100</th>
<th>101-150</th>
<th>151-200</th>
<th>201-250</th>
<th>251-300</th>
<th>>300</th>
<th>Summe</th>
<th>User’s A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8164</td>
<td>1289</td>
<td>2625</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>12078</td>
<td>68%</td>
</tr>
<tr>
<td>1-20</td>
<td>16934</td>
<td>16552</td>
<td>1707</td>
<td>3567</td>
<td>16340</td>
<td>23913</td>
<td>22608</td>
<td>12566</td>
<td>1976</td>
<td>116163</td>
<td>14%</td>
</tr>
<tr>
<td>21-50</td>
<td>5287</td>
<td>3715</td>
<td>15322</td>
<td>4803</td>
<td>14745</td>
<td>4344</td>
<td>7009</td>
<td>826</td>
<td>0</td>
<td>56051</td>
<td>27%</td>
</tr>
<tr>
<td>51-100</td>
<td>588</td>
<td>1006</td>
<td>9707</td>
<td>20536</td>
<td>26272</td>
<td>18713</td>
<td>30409</td>
<td>12303</td>
<td>3347</td>
<td>122881</td>
<td>17%</td>
</tr>
<tr>
<td>101-150</td>
<td>8114</td>
<td>771</td>
<td>3190</td>
<td>29592</td>
<td>60662</td>
<td>57209</td>
<td>43573</td>
<td>29890</td>
<td>2519</td>
<td>235520</td>
<td>26%</td>
</tr>
<tr>
<td>151-200</td>
<td>2154</td>
<td>147</td>
<td>6689</td>
<td>19070</td>
<td>32467</td>
<td>29886</td>
<td>16225</td>
<td>4720</td>
<td>0</td>
<td>113358</td>
<td>29%</td>
</tr>
<tr>
<td>201-250</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2876</td>
<td>13152</td>
<td>35872</td>
<td>10330</td>
<td>4947</td>
<td>0</td>
<td>67177</td>
<td>53%</td>
</tr>
<tr>
<td>251-300</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>489</td>
<td>1619</td>
<td>7207</td>
<td>15651</td>
<td>1256</td>
<td>0</td>
<td>26222</td>
<td>60%</td>
</tr>
<tr>
<td>>300</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1766</td>
<td>1269</td>
<td>12276</td>
<td>17127</td>
<td>4146</td>
<td>0</td>
<td>36584</td>
<td>11%</td>
</tr>
<tr>
<td>Summe</td>
<td>41241</td>
<td>23333</td>
<td>32698</td>
<td>65187</td>
<td>142220</td>
<td>152686</td>
<td>188840</td>
<td>116918</td>
<td>22911</td>
<td>786034</td>
<td></td>
</tr>
<tr>
<td>Prod. A.</td>
<td>20%</td>
<td>71%</td>
<td>47%</td>
<td>32%</td>
<td>43%</td>
<td>21%</td>
<td>19%</td>
<td>13%</td>
<td>18%</td>
<td>26,60%</td>
<td></td>
</tr>
</tbody>
</table>

Die Gesamtgenauigkeit für die Einteilung in neun Klassen war gering (26,6 %) und auch nach der Reduktion auf fünf Klassen deutlich schlechter (42,3 %) als in Testfläche SW (58,9 %). Die Klassen bis 150 Vfm/ha erreichten höhere Genauigkeiten als im Bereich
Kapitel 11: Klassifizierung
darüber. Dort traten auch Fehlklassifizierungen in weit entfernten Klassen auf. Es gibt
durchaus auch Bereiche, in denen die Klassifizierung gute Ergebnisse erreichte
(Abbildung 54).

Abbildung 54: Ausschnitt aus der Testfläche SO. Vergleich der Klassifizierung nach 9
Volumsklassen (links) mit den Referenzdaten (rechts).

Die Klasse der Kahlflächen (0 Vfm/ha) besaß eine überraschend geringe Genauigkeit
(20 %). Das ist darauf zurückzuführen, dass die Bestände des Referenzdatensatzes mit 0
Vfm/ha zu einem großen Teil abgestorbene Waldbestände waren und keine typischen
Kahlflächen, während neue Kahlschläge (im Satellitenbild eindeutig erkennbar) in den
Daten der Forstinventur noch nicht aufgenommen waren.

Referenzdaten	0	1-50	51-150	151-250	>250	Summe	User’Acc.
0	8164	3914	0	0	0	12078	68%
1-50	22221	37296	39455	57874	15368	172214	22%
51-150	8702	14674	137062	149904	48059	358401	38%
151-250	2154	147	28635	111377	38222	180535	62%
>250	0	0	2255	22371	38180	62806	61%
Summe	41241	56031	207407	341526	139829	786034	
Prod. Acc.	20%	67%	66%	33%	27%	42,30%	
Gesamtgenauigkeit	42,3%						
K	0,23						
Kw	0,42						

Tabelle 35: Fehlermatrix, κ und Kw für die Klassifikation nach den zusammengefassten
Volumsklassen in der Testfläche SO.
Einen Einfluss auf die Gesamtgenauigkeit übt auch der Flächenanteil der einzelnen Klassen aus. Da der Anteil an hohen Volumsklassen, welche mit geringerer Genauigkeit klassifiziert werden können, groß war, wurde auch das Gesamtergebnis verschlechtert.

11.3.3 Klassifizierung nach Bestandesvolumen mit Zusatzinformation

Kapitel 11: Klassifizierung

Im vorliegenden Fall wurde die Einteilung aus den Daten der Forstinventur entnommen. Es wurde allerdings von der Annahme ausgegangen, dass derart grobe Information über die vorherrschenden Baumarten verfügbar ist; immerhin kann auch veraltete Information verwendet werden, da die Baumartenzusammensetzung über längere Zeit ziemlich konstant bleibt.

Die Klassifizierung nach neun Volumsklassen wurde mit dem Ergebnis verglichen, welches sich ergab, wenn die Inventuruniten vor der Klassifizierung durch Zusatzinformation nach Baumgruppen eingeteilt wurden. Um eine bessere Vergleichbarkeit zu erzielen, wurden diese zwei Verfahren der Klassifizierung in der Testfläche SO mit Zugehörigkeitsfunktionen durchgeführt, die nach der automatischen Erstellung nicht weiter verändert wurden (Die Genauigkeiten aus Tabelle 36 stellen also den Ausgangspunkt für Tabelle 34 dar. In diesem Fall konnten die Veränderungen an den Zugehörigkeitsfunktionen kaum eine Genauigkeitssteigerung bewirken, im Allgemeinen war diese jedoch deutlich). Der Vergleich der Klassengenauigkeiten (Producer’s Accuracy) und der Gesamtgenauigkeit zeigt, dass das Ergebnis durch die Zusatzinformation über die Baumartenzusammensetzung nicht verbessert werden konnte (Tabelle 36).

<table>
<thead>
<tr>
<th>Klassifikationsverfahren</th>
<th>Volumen [Vfm/ha]</th>
<th>Gesamtgenauigkeit</th>
<th>K_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Volumsklassen</td>
<td>0 1-20 21-50 51-100 101-150 151-200 201-250 251-300 >300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mit Baumarteninformation</td>
<td>9% 76% 22% 28% 35% 2% 19% 4% 18%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18% 71% 44% 32% 51% 14% 18% 13% 18%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>22% 28% 35% 2% 19% 4% 18% 18,6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18% 26,3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 36: Vergleich der Genauigkeiten der Klassifizierungen mit bzw. ohne Baumarteninformation für die Testfläche SO.

Für die Testflächen SW wurde der Vergleich dieser zwei Klassifizierungsverfahren erneut durchgeführt (Tabelle 37). Hier wurden die Zugehörigkeitsfunktionen in den Klassenbeschrifungen für die Laubholz- bzw. Nadelholz-Volumsklassen analog zur allgemeinen Vorgehensweise verändert.

<table>
<thead>
<tr>
<th>Klassifikationsverfahren</th>
<th>Volumen [Vfm/ha]</th>
<th>Gesamtgenauigkeit</th>
<th>K_w</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Volumsklassen</td>
<td>0 1-20 21-50 51-100 101-150 151-200 201-250 251-300 >300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mit Baumarteninformation</td>
<td>76% 78% 0% 3% 21% 4% 1% 15% 42%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>60% 85% 26% 7% 44% 8% 4% 19% 38%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>36,8% 0,86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 37: Vergleich der Genauigkeiten der Klassifizierungen mit bzw. ohne Baumarteninformation für die Testfläche SW.
11.4 Zusammenfassung

Obwohl über die oben im Detail beschriebenen Variationen hinaus verschiedene Abwandlungen von Teilbereichen des Klassifikationsverfahrens erprobt wurden, ergaben sich jeweils sehr ähnliche Ergebnisse. Die Gesamtgenauigkeit und der κ-Koeffizient konnten jedenfalls nicht wesentlich verbessert werden. Auch wenn es zwischen den einzelnen Klassen zum Teil beträchtliche Verschiebungen gab, blieben die Unterschiede zwischen den Testflächen, die Bereiche mit Fehlklassifikationen und die Differenz zwischen Klassen, die höhere Genauigkeiten erreichen, und Klassen, die tendenziell schwieriger zu identifizieren sind, sehr ähnlich. Die Veränderungen, auf unterschiedliche Weise kombiniert, betrafen folgende Bereiche der Vorgehensweise:

- **Verknüpfung:** Die Verknüpfungsvorschrift der Zugehörigkeitsfunktionen innerhalb einer Klassenbeschreibung wurde ausgetauscht und der durchwegs verwendete Operator and (min) durch and (*) und or (max) ersetzt. Die Auswirkungen auf die Klassifizierung waren zum Teil sehr gering, auch wenn sich der Wertebereich der Klassenunterstützungswerte stark änderte.

- **Parameter der Funktionen:** Die Formen der Zugehörigkeitsfunktionen wurden abgewandelt, um der Klassenzahl und der Spektralverteilung innerhalb der Klassen optimal zu entsprechen; aber auch für die einzelnen Klassifikationen wurden verschiedene Parameter getestet.

- **Zur Errechnung der Funktionen** wurde entweder auf die spektralen Werte der Inventurinheiten oder auf die der sehr viel kleineren Unterobjekte zurückgegriffen, was die Histogramme der Trainingsdaten beeinflusst. Die Verwendung der Bestandesmittelwerte lieferte eine geringere Streuung innerhalb der Klassen und meist ein besseres Klassifikationsergebnis.

- **Anwendung der Klassifizierung:** Die Ergebnisse einer Klassifizierung auf Bestandesebene wurden mit einer Klassifizierung der Unterebene verglichen. Eine Anwendung auf die Objekte der Unterebene ergab durchwegs niedrigere Werte in der Genauigkeitsanalyse durch die Fehlermatrix. Ein visueller Vergleich mit den Referenzdaten ergab, dass auch das Klassifikationsergebnis der Unterebene, das räumlich detailliertere Information beinhaltet, plausibel ist. Eine Klassifikation der Bestände aufgrund der Unterobjekte (relative Mehrheit pro Bestand) konnte in einem Fall das Ergebnis leicht verbessern.

Kapitel 11: Klassifizierung

Die Einteilung in vier Bestandestypen mit unterschiedlicher Baumartenzusammensetzung gelang in beiden Testflächen gut. Die Gesamtgenauigkeit lag bei 60 % (SW: 60,1 %, SO: 59,1 %) und der gewichtete κ-Koeffizient κ_w erreichte 0,80 (SW) bzw. 0,75 (SO). Bei der Klassifizierung nach Baumartenzusammensetzung lassen sich Reinbestände mit einem Anteil von $\geq 9/10$ an Laubholz bzw. Nadelholz leichter erkennen als Mischbestandsklassen. Während bei laub- bzw. nadelholzdominierten Mischbeständen die Genauigkeiten (Producer’s Accuracy) bei 33 % und 54 % (SW) bzw. 21 % und 50 % (SO) lagen, waren sie für Laubholz-Reinbestände 78 % (SW) bzw. 81 % (SO) und für Nadelholz-Reinbestände 79 % (SW) bzw. 67 % (SO) deutlich höher.

Die Unterscheidung von Volumsklassen folgte zu Beginn einer Einteilung in neun Klassen. Diese Klasseneinteilung erwies sich als deutlich zu fein, sodass sie auf fünf Klassen reduziert wurde.

In der Testfläche SW gelang die Unterscheidung von fünf Holzvorratsklassen gut. Die Gesamtgenauigkeit betrug 58,9 % und der κ_w lag bei 0,83. Fehlklassifizierungen traten hauptsächlich in Nachbarklassen auf; grobe Fehler in weit entfernten Klassen kamen nicht vor. Die Klassifizierungsergebnisse in der Testfläche SO (Gesamtgenauigkeit 42,3 %, κ_w : 0,42 für die Einteilung in 5 Klassen) konnte dieses Genauigkeitsniveau nicht erreichen. Dort wurde allerdings deutlich, dass niedrige Volumsklassen (bis 150 Vfm) höhere Genauigkeiten besitzen als Klassen in höheren Volumsbereichen. Die Klassifizierungen mit neun Klassen (SW und SO) weist ebenfalls darauf hin, dass Bereiche mit geringem Holzvorrat eine detaillierte Klasseneinteilung möglich machen, während Klassen ab ca. 150 Vfm/ha einen Bereich von mindestens 100 Vfm/ha umfassen müssen, um vergleichbare Genauigkeiten zu erzielen.

Die Einbindung von Zusatzinformation über die Baumartenzusammensetzung der Bestände konnte das Klassifizierungsergebnis für Volumsklassen nicht verbessern.

Durch eine Analyse der Ergebnisse konnten allgemeine Einflüsse auf die Klassifizierungsgenauigkeit, spezielle Einflüsse auf die Fehlermatrix sowie in bestimmten Bereichen Gründe für Fehlklassifizierungen aufgezeigt werden.
12 Diskussion der Ergebnisse

12.1 Datenvorverarbeitung

Da eine kombinierte atmosphärische und topographische Korrektur wegen Überlagerungsfehlern zwischen Satellitenbild und digitalem Geländemodell nicht möglich bzw. sinnvoll war, wurde eine Dark Object Subtraction (DOS) durchgeführt. Dies ist ein einfaches Näherungsverfahren zur Luftlichtkorrektur, welches auf einer Analyse der Histogramme der einzelnen Spektralkanäle beruht. Es dient zur Beseitigung oder zumindest Minderung des Atmosphäreeneinflusses und soll dadurch eine Homogenisierung verschiedener Bilddaten und eine erhöhte Vergleichbarkeit ermöglichen.

Eine Homogenisierung von Daten unterschiedlicher Aufnahmezeitpunkte bzw. -orte für detaillierte Auswertungen erfordert in jedem Fall die Anwendung komplexerer Korrekturverfahren. Zu diesem Zweck stehen spezielle Programmpakete zur Verfügung, die mit Hilfe von Zusatzdaten atmosphärische Modelle erstellen, welche das Luftlicht und die Strahlungstransmission gemäß den atmosphärischen Bedingungen nachbilden.

Die Vorverarbeitungsschritte zeigten auch Probleme auf, die entstehen können, wenn eine Verschneidung von Daten aus verschiedenen Quellen notwendig ist. Der GIS-Datensatz, der die Referenzdaten enthielt, stimmte mit den georeferenzierten Satellitenbildausschnitten zwar geometrisch gut überein, doch die zeitliche Differenz der Aufnahmezeitpunkte ergab inhaltliche Abweichungen. Das digitale Geländemodell hingegen konnte aufgrund geometrischer Überlagerungsfehler nicht für eine radiometrische Korrektur der Satellitendaten eingesetzt werden.

12.2 Kanalkombinationen

Kapitel 12: Diskussion der Ergebnisse

12.3 Signaturanalyse

Durch eine Signaturanalyse wurde der Zusammenhang zwischen forstlichen Bestandesvariablen und den Grauwerten der Landsat-Kanäle untersucht.

Im Allgemeinen nahmen die Grauwerte der einzelnen Kanäle mit zunehmendem Bestandesvolumen ab, wobei der Zusammenhang in niedrigen Volumsbereichen stärker als bei hohen Holzvorratswerten war. Die deutlichste Erklärungskraft besaß der Kanal des nahen Infrarot (ETM 4); etwas schwächer war der Zusammenhang mit dem mittleren Infrarot (ETM 5), dessen Wertebereich auch schmäler als der des ETM 4 war. Die Aussagekraft des panchromatischen Kanals (ETM 8) bezüglich Bestandesvolumen war mit dem des ETM 4 vergleichbar und lag über jener der restlichen Kanäle. Die Form des Zusammenhanges konnte jeweils durch eine quadratische Regressionsfunktion angenähert werden (Abbildung 17). Das Bestimmtheitsmaß (r^2) ergab durchwegs hohe Werte: in der Testfläche NO erreichte der panchromatische Kanal (ETM 8) ein r^2 von 0,67; in der Testfläche SW der Kanal ETM 4 ein r^2 von 0,67 und der Kanal ETM 5 ein r^2 von 0,66.

Ebenfalls deutlich wurde der Einfluss, welchen die Baumartenzusammensetzung auf die Reflexionseigenschaften der Inventurinheiten ausübt. Mit zunehmendem Nadelholzanteil nehmen die Grauwerte, wieder im nahen (ETM 4) und mittleren Infrarot (ETM 5) sowie panchromatischen Kanal (ETM 8) am deutlichsten sichtbar, kontinuierlich ab (Abbildung 21). Eine Auftrennung in vier Klassen nach der Baumartenzusammensetzung lässt erkennen, dass auch innerhalb dieser Gruppen der vorhin beschriebene Zusammenhang zwischen Grauwerten und Volumen bestehen bleibt. Allerdings besitzt die Baumart einen starken Einfluss auf die Reflexion und kann einen Teil der Streuung im Zusammenhang mit dem Bestandesvolumen erklären (Abbildungen 23 bis 28).

12.4 Texturanalyse

Ein möglicher Grund für die geringe Aussagekraft der Texturparameter ist die beschränkte geometrischen Auflösung (30 m x 30 m) der Landsat-Daten, die anscheinend für eine Erfassung der Struktur von Waldbeständen nicht geeignet ist. Der panchromatische Kanal mit der höheren geometrischen Auflösung (15 m x 15 m) lieferte im Vergleich zu den übrigen Spektralkanälen deutlichere Zusammenhänge mit den Bestandesparametern,
Kapitel 12: Diskussion der Ergebnisse

konnte die Differenzierung von verschiedenen Bestandestypen jedoch nicht entscheidend unterstützen.

Diese Segmentierungsebene mit den kleinen Objekten (Abbildung 44) wurde später auch im Rahmen der Klassifizierung eingesetzt.

12.5 Klassifizierung

12.5.1 Ergebnisse

Zwei der Testflächen, mit einer Größe von 21.000 ha (SO) bzw. 26.000 ha (SW), wurden nach Baumartenzusammensetzung (vier Klassen nach Laub- bzw. Nadelholzanteil) und Holzvorrat (neun Klassen, die zu fünf zusammengefasst wurden) klassifiziert. Die Klassifizierung wurde auf Bestandesebene durchgeführt, wobei die Abgrenzung der Inventurobjektseinheiten aus den Daten der Forsteinrichtung übernommen wurde.

Die Einteilung in vier Klassen nach dem Laubholzanteil erreichte für beide Testflächen gute und sehr ähnliche Ergebnisse. Die Genauigkeitsanalyse anhand einer Fehlermatrix ergab eine Gesamtgenauigkeit von ca. 60 % (60,1 %, 59,1 %) und einen K_w-Koeffizienten von 0,80 bzw. 0,75. Die Reinbestandsklassen, mit einem Laubholz- bzw. Nadelholzanteil von $\geq 9/10$, konnten mit einer höheren Genauigkeit identifiziert werden als die zwei Mischbestandsklassen.

Die Unterscheidung von fünf Volumsklassen innerhalb des Waldes (0 Vfm/ha, 1-50 Vfm/ha, 51-151 Vfm/ha, 151-250 Vfm/ha, > 250 Vfm/ha) gelang in der Testfläche SW ebenfalls gut (Gesamtgenauigkeit 58,9 %, $K_w : 0,83$), in der zweiten Testfläche allerdings blieb die Klassifizierungsgenauigkeit deutlich darunter (Gesamtgenauigkeit 42,3 %, $K_w : 0,42$). Die Ausgangsklassifikation mit einer Unterteilung von neun Klassen erwies sich als eindeutig zu detailliert, denn die Genauigkeit einzelner Klassen sank bis unter 10 %, wobei sich vor allem die Bestimmung hoher Volumsklassen als problematisch erwies.

Die Klassifizierung von fünf Klassen erreichte in den Klassen bis 150 Vfm/ha gute Genauigkeiten, wobei die Klassifizierung nach neun Klassen angedeutet hatte, dass in diesem Bereich eine feinere Einteilung als in hohen Volumsbereichen möglich ist. Bereits die Signaturanalyse hatte gezeigt, dass die Sensitivität der Grauwerte bezüglich Bestandsvolumen mit steigendem Hektarvorrat zurückgeht. Zusätzlich ist die Erhebung der Referenzdaten mit einem bestimmten Fehler behaftet (der Holzvorrat hiesreifer
Bestände wird mit einer Genauigkeit von 15 % bestimmt), sodass die Unsicherheit der Referenzdaten in hohen Volumsbereichen im Verhältnis zur Klassenbreite groß ist.

Ein sehr ähnliches Ergebnis erzielte GJERTSEN (1996) in einem Nadelwaldgebiet in Norwegen. Auch in dieser Untersuchung verschwand der Zusammenhang zwischen den Spektralkanälen von Landsat TM bzw. SPOT XS und dem Volumen ab einem Holzvorratswert von 175 m³/ha mehr oder weniger. Mit Hilfe des Kanals im nahen Infrarot (XS3) von SPOT konnten die Bestände grob in drei Volumsklassen (0-25 m³/ha, 26-125 m³/ha und > 125 m³/ha) eingeteilt werden. Bei einer Unterteilung der Referenzmessungen in zwei Gruppen wurde gezeigt, dass die Korrelation bei den niedrigen Volumen (bis 150 Vfm/ha) stark, bei den höheren Volumen (über 150 Vfm/ha) hingegen schwach war.

12.5.2 Genauigkeitsanalyse

Die Güte der Klassifizierung wurde anhand von Kennzahlen einer Fehlermatrix geprüft. Dabei wirkten verschiedene allgemeine Einflüsse auf die Klassifizierungs- genauigkeit ein und können Ursachen für Fehlklassifizierungen darstellen:

- Es konnte keine topographische Korrektur der Satellitendaten durchgeführt werden. Da die Klassifizierung innerhalb des Waldes mehrere Bestandstypen unterscheiden sollte, spielten bereits geringe Grauwertunterschiede eine entscheidende Rolle. Der Ausgleich durch das Geländerelief hervorgerufene Helligkeitsunterschiede sollte daher das Ergebnis verbessern können. Die Gegend um die Testgebiete ist mit Seehöhen bis maximal 600 m jedoch nicht sehr gebirgig und besitzt auch keine ausgesprochen schroffen Geländeformen, was den Verzicht auf die topographische Korrektur vertretbar machte. Im Klassifizierungsergebnis war kein augenscheinlicher Einfluss der Topographie zu erkennen.

- Das westliche der beiden Satellitenbilder, auf dem die Testflächen NW und SW lagen, wies eine sensorbedingte Störung auf, die eine fischgräätartige Streifung über das Bild legte. Sie war im Kanal ETM 3 am deutlichsten, aber auch in ETM 2 vorhanden (Abbildung 56). Die Klassifizierung auf Bestandesebene wurde dadurch nicht merklich beeinflusst. Da die mittlere Größe der Inventureinheiten in der Testfläche NW 23,3 ha
Kapitel 12: Diskussion der Ergebnisse

und in Testfläche SW 48 ha beträgt, wurde durch die Mittelwertbildung über derart große Flächen der Einfluss minimiert. Allerdings zeigte sich ein Effekt der Bildstörung bei der Anwendung der Klassifizierung auf die kleineren Objekte der Unterebene. Dort bildete sich das Störmuster auch im Klassifizierungsergebnis ab, wenn einer der betroffenen Kanäle (ETM 2, ETM 3, NDVI oder ETM 5/ETM 2) verwendet wurde.

Abbildung 56: Sensorstörung im Kanal ETM 3; Testfläche SW.

möglich, da auch die Referenzdaten eine bestimmte Ungenauigkeit in der Bestimmung der forstlichen Parameter beinhalten. Zudem kann es Veränderungen geben, die nicht alle durch die erfolgte Vorauswahl der Bestände erkannt worden sind.

Im Projekt SIBERIA, welches mit Referenzdaten der selben Quelle arbeitete, konnte gezeigt werden, dass Klassifizierungen in Gebieten mit genau erhobenen und aktuellen Daten deutlich höhere Genauigkeiten lieferten (SCHMULLIUS 2001).

Bei der Betrachtung der Fehlermaße sind zudem spezielle Einflussfaktoren zu berücksichtigen.

Kahlschläge bzw. Bereiche mit sehr niedrigem Volumen können in der Regel mit einer hohen Genauigkeit identifiziert werden. Die neu hinzugekommenen Kahlflächen fanden sich aber z.T. noch nicht in der Fehlermatrix, sodass sie nicht als richtig klassifizierte Flächen gewertet werden konnten, was die Gesamtgenauigkeit verschlechterte. Ebenso beeinflusste der Flächenanteil in den einzelnen Klassen die Kennzahlen. Sind hohe Volumsklassen stark vertreten, dann sinkt die Gesamtgenauigkeit, da diese Klassen mit geringerer Genauigkeit bestimmt werden können als Klassen mit niedrigem Bestandesvolumen. Das kann auch ein Grund für die unterschiedlichen Gesamtgenauigkeiten zwischen den Testflächen bei der Klassifikation von Volumsklassen sein. In der Testfläche SO (Gesamtgenauigkeit 42,3 %) besitzen 61 % der Fläche Hektarvorräte von über 150 Vfm, in der Testfläche SW dagegen nur 40 % (Gesamtgenauigkeit 58,9 %).

Bei der bestandesweisen Klassifikation wurde bereits durch die Zuweisung einzelner oder weniger großflächiger Bestände das Gesamtergebnis verändert, da Bestandesgrößen von 300 ha und mehr auftraten. Der größte Bestand in der Testfläche SW umfasst 680 ha, was immerhin 2,6 % der Fläche entspricht.

In mittleren Bereich der Testfläche SO schien es so, als würde der Einfluss der Baumartenzusammensetzung die Volumsklassifikation behindern, da laubholzdominierte Bestände im Volumen durchwegs unterschätzt wurden (Abbildung 55).
Auch die Klasse der Kahlflächen wurde in der Testfläche SO mit überraschend geringer Genauigkeit bestimmt. Hier stellte sich heraus, dass die Klasse ohne Holzvorrat (0 Vfm) in den Referenzdaten einen hohen Anteil an Flächen mit abgestorbenen aber stehenden Bäumen enthielt bzw. es sich um stark bewachsene Kahlflächen handelte (im Satellitenbild zu erkennen), was die Identifikation erschwerte.

Aus der Analyse der Fehlklassifikationen und den Ergebnissen der Signaturanalyse folgend wurde der Versuch unternommen, durch Zusatzinformation über die Baumartenzusammensetzung der Inventurinheiten die Klassifizierungsgenauigkeit der Volumsklassen zu verbessern.
Die Testflächen wurden jeweils in zwei Gruppen, in laubholz- und in nadelholzdominierte Inventurinheiten eingeteilt. Anschließend wurde in diesen beiden Straten die Klassifizierung durchgeführt und mit der vorher erfolgten Klassifizierung nach insgesamt neun Volumsklassen verglichen. Die Einbindung der Zusatzinformation über die Baumartenzusammensetzung der Bestände konnte im vorliegenden Fall die Klassifikation nicht verbessern.
Ein möglicher Grund liegt darin, dass durch diese Vorgehensweise eine sehr feine Klasseneinteilung (17 Klassen) entstand und daher pro Klasse zu wenig Trainingsbestände vorhanden waren, um die jeweilige Klasse ausreichend zu charakterisieren. Bei einer geringen Anzahl von Trainingsbeständen spielen einzelne Ausreißer eine wichtigere Rolle, sodass eine genaue Prüfung der Trainingsdaten nötig gewesen wäre. Auch ist bei einer derart hohen Klassenanzahl die Beeinflussung durch Unterschiede im Waldaufbau zwischen den Testflächen schwerwiegender. So sind in der Testfläche NW im Bereich bis 100 Vfm/ha 73% der Fläche nadelholzdominiert, in der Testfläche SW dagegen nur 4,8 %, was Einfluss auf die jeweilige Spektralverteilung der Klassen hat.

12.5.3 Klassifizierungsverfahren
Das Klassifikationsverfahren ist prinzipiell eher auf eine wissensbasierte Klassifizierung ausgelegt, bei der Wissen in Form von Regeln formuliert wird, und ist kein speziell auf die Analyse multispektraler Daten ausgelegtes Verfahren. Im vorliegenden Fall wurden als Grundlage die Zugehörigkeitsfunktionen in den einzelnen Landsat-Kanälen automatisiert aus der Spektralverteilung von Trainingsdaten erstellt.
Kapitel 12: Diskussion der Ergebnisse

Das Verfahren besitzt jedoch den Vorteil, dass Veränderungen an den Funktionen vorgenommen werden können und Klassencharakteristika, die sich auf beliebige Objekteigenschaften beziehen, zusätzlich eingebaut werden können. Dadurch ist eine Klassenbeschreibung nicht streng auf die Trainingsdaten limitiert und kann durch Wissen über typische Reflexionseigenschaften von bestimmten Klassen bzw. Zusatzinformation ergänzt werden. Nachträgliche Veränderungen an der Form der Funktionen erwiesen sich als nützlich, beispielsweise wenn eine Klasse in den Trainingsdaten unterrepräsentiert war oder einzelne deutliche Ausreißer die Form der Funktionen verfälscht hatten. Dadurch wird auch die Auswahl der Trainingsdaten bezüglich Repräsentativität weniger bedeutend. Es hat sich gezeigt, dass die Veränderungen, auch wenn sie nur gering waren, das Klassifikationsergebnis teilweise deutlich verbesserten.

Beim Einbau von Zusatzinformation ist auch auf die richtige Wahl des Operators zu achten, damit diese nicht zu einem Ausschlusskriterium wird. Dies kann z.B. passieren, wenn Zusatzkriterien durch den Operator and (min), welcher den minimalen Zugehörigkeitswert aller Funktionen bestimmt, in die Klassenbeschreibung eingeefügt werden.

Da die Auswertesoftware einen objektorientierten Ansatz verwendet, stellen die spektralen Werte immer Mittelwerte von Objekten dar, die völlig unterschiedliche durchschnittliche Größe besitzen können. Für die Spektralverteilung der Trainingsdaten spielt also die Größe der verwendeten Objekte eine Rolle. Die Unterebene mit den durchschnittlich sehr viel kleineren Objekten lieferte zwar ausgeglichenerere Histogramme, doch war die Verteilung aus den Mittelwerten der Inventurinheiten kompakter und für die Klassifizierung besser geeignet (Abbildung 48).

Ebenso kann die Anwendung der Klassifizierung auf verschiedene Objektebenen erfolgen. Bei einem Vergleich der Kennzahlen der Fehlermatrix (die aufgrund von Pixeln berechnet werden) erreichten die größeren Objekte, die Bestände, die bessere Übereinstimmung mit den Referenzdaten. In diesem Fall wurden die spektralen Mittelwerte der Inventurinheiten verwendet und im Allgemein läßt sich ein strafferer Zusammenhang mit forstlichen
Parametern herstellen, je größer die Flächen sind, die zur Mittelwertbildung benutzt werden. Allerdings lieferte die Unterebene geometrisch sehr viel detailliertere Ergebnisse und war dadurch ebenfalls aussagekräftig und nützlich. Auch wenn im Vergleich mit den Referenzdaten viele Objekte als falsch klassifiziert ausgewiesen wurden, so kann das Ergebnis teilweise doch der Situation am Boden entsprechen, weil Bestände ja in der Natur auch nicht vollständig homogen aufgebaut sind.

Das Klassifikationsverfahren ist wohl kaum geeignet, die gesamte in multispektralen Daten vorhandene Information optimal zu nutzen. Obwohl dieses Verfahren die Information mehrerer Spektralkanäle verwendet, werden die Zusammenhänge zwischen den Kanäle nicht so genutzt wie bei klassischen Verfahren im multispektralen Merkmalsraum. Das Verfahren ist durch die Zugehörigkeitsfunktionen sehr gut geeignet, über die Formulierung von Regeln mit Objektparametern wie Abstand, Grenzlänge etc. sowie verschiedensten Beziehungen von Objekten untereinander umzugehen.

13 Zusammenfassung

Das Ziel der vorliegenden Arbeit war die Entwicklung einer Methode zur Ableitung von Holzvorratsklassen und zur Bestimmung der Baumarten zusammensetzung von Waldbeständen aus Daten des Satelliten Landsat 7 in einem borealen Waldgebiet Sibiriens.

Den Anstoß stellte das Projekt SIBERIA (SAR Imaging for Boreal Ecology and Radar Interferometry Applications) dar, welches durch die Auswertung von Radardaten innerhalb des Waldes vier Biomasseklassen (≤ 20 m³/ha, 21-50 m³/ha, 51-80 m³/ha, > 80 m³/ha) unterscheiden konnte. Die Analyse der optischen Daten des Sensors ETM+ von Landsat 7 sollte auch einen Vergleich mit dem Informationsgehalt der Radardaten ermöglichen.

Durch eine Signaturanalyse wurde die Art des Zusammenhanges zwischen den forstlichen Bestandesparametern und den Grauwerten der Landsat-Kanäle aufgezeigt. Es zeigten sich straffe Zusammenhänge zwischen dem Bestandesvolumen (Vfm/ha) und den Kanälen des nahen (ETM 4) und des mittleren (ETM 5) Infrarot. Die Reflexionswerte waren bei niedrigen Volumen hoch und sanken mit zunehmendem Holzvorrat kontinuierlich ab, wobei die Form der Zusammenhänge jeweils durch eine quadratische Regressionsfunktion beschrieben
Kapitel 13: Zusammenfassung

Die Evaluierung der Klassifizierungsergebnisses erfolgte durch einen Vergleich mit den Referenzdaten der Forstinventur anhand von Kennzahlen einer Fehlermatrix und eines κ_w-Koeffizienten. Für die vier Bestandestypen nach Baumartenzusammensetzung ergaben sich Gesamtgenauigkeiten von 60,1 % bzw. 59,1 % und ein κ_w von 0,80 bzw. 0,75. Reinbestände waren eindeutiger zu klassifizieren als die Mischbestandsklassen. Für die fünf Volumsklassen waren die Genauigkeiten in einer Testfläche höher (Gesamtgenauigkeit 58,9 % und ein κ_w von 0,83), in der anderen lagen sie deutlich darunter (42,3 % und ein κ_w von 0,42). Die Klassifizierung ergab in den niedrigen Volumsklassen tendenziell bessere Ergebnisse als in hohen Holzvorratsklassen, wobei Fehlklassifizierungen allerdings durchwegs auf Nachbarklassen beschränkt blieben. Unterschiede zwischen hohem und niedrigem Holzvorrat werden in jedem Fall deutlich, sodass Landsat-Daten für die Überwachung entlegener Gebiete (Nutzungen, Waldbrand, Insektenkalamitäten) oder die Identifikation nutzbarer Bestände einsetzbar sind.
14 Abbildungsverzeichnis

Abbildung 1: Die Landsat-Bahnparameter (aus LILLESAND UND KIEFER 2000) .. 18
Abbildung 2: Prinzip der radiometrischen Kalibrierung (aus IRISH (1998), verändert) ... 21
Abbildung 3: Schematische Darstellung der Eindringtiefe von Mikrowellen am Beispiel Vegetation (aus ALBERTZ 2001) ... 25
Abbildung 5: Hierarchische Struktur der Objekte, verdeutlicht an einem Beispiel mit vier Ebenen 48
Abbildung 6: Scharf abgegrenzte Mengen vs. Fuzzy-Mengen. ... 50
Abbildung 7: Beispiele von verschiedenen Formen von Zugehörigkeits-funktionen, die umgangssprachliche Aussagen umsetzen (aus KRUSE 1995). .. 51
Abbildung 8: Die großräumige Lage des Untersuchungsgebietes ... 53
Abbildung 9: Die genaue Lage der vier Testgebiete. .. 55
Abbildung 10: Satellitenbild (ETM 8, links) und digitales Geländemodell (rechts) im Vergleich 65
Abbildung 11: Ausschnitt aus der Testfläche SW. Die Illuminationsunterschiede zwischen den Talflanken sind deutlich erkennbar. .. 67
Abbildung 12: Prinzip der Luftlichtkorrektur (aus HILDEBRANDT 1996). .. 68
Abbildung 13: Beispiele für geometrische Überlagerungsfehler, durch Nutzung hinfällig gewordene Bestandesabgrenzungen, gute Übereinstimmung zwischen Satellitenbild und GIS-Datensatz. 71
Abbildung 14: Zusammenhang zwischen Alter und Bestandesvolumen [Vfm/ha], aufgetrennt nach Baumartengruppen, dargestellt für die Testfläche NO ... 74
Abbildung 15: Zusammenhang zwischen Bestockungsgrad und Bestandesvolumen ... 76
Abbildung 16: Zusammenhang zwischen Bestockungsgrad und Alter .. 76
Abbildung 17: Abhängigkeit des Bestandesvolumens von den Grauwerten im Kanal ETM 4 (NIR) 78
Abbildung 18: Abhängigkeit des Bestandesvolumens von den Grauwerten im Kanal ETM 5 (MIR) 78
Abbildung 19: Abhängigkeit des Bestandesvolumens von den Grauwerten im panchromatischen Kanal 79
Abbildung 20: Abhängigkeit des Bestandesvolumens vom NDVI (skaliert). .. 79
Abbildung 21: Abhängigkeit zwischen ETM 4 und dem Nadelholzanteil ... 79
Abbildung 22: Abhängigkeit zwischen NDVI (skaliert) und Nadelholzanteil .. 79
Abbildung 23: Mittelwerte und Standardabweichung der Volumsklassen in Kanal ETM 4 ... 80
Abbildung 24: Mittelwerte und Standardabweichung der Volumsklassen in Kanal ETM 4, getrennt nach Baumartenzusammensetzung ... 81
Abbildung 25: Mittelwerte und Standardabweichung der Volumsklassen in Kanal ETM 5 (MIR) 81
Abbildung 26: Mittelwerte und Standardabweichung der Volumsklassen in Kanal ETM 5 (MIR), getrennt nach Baumartenzusammensetzung ... 81
Abbildung 27: Zusammenhang zwischen Bestandesvolumen und Grauwerten in Kanal ETM 4 für die Bestände der Testfläche NO, getrennt nach Baumartenzusammensetzung ... 81
Abbildung 28: Zusammenhang zwischen Bestandesvolumen und Grauwerten in Kanal ETM 4 für die Bestände der Testflächen NW und SW, getrennt nach Baumartenzusammensetzung 81
Abbildung 29: Abhängigkeit des mittleren Bestandesalters von den Grauwerten in Kanal ETM 4 (NIR) 82
Abbildung 30: Abhängigkeit des mittleren Bestandesalters vom NDVI (skaliert) ... 82
Abbildung 31: Bestandestypen im Merkmalsraum ETM 3 (rot) zu ETM 4 (NIR) ... 83
Abbildung 32: Bestandestypen im Merkmalsraum ETM 4 (NIR) zu ETM 5 (MIR) ... 83
Abbildung 33: Bestandestypen im Merkmalsraum ETM 3 (rot) zu ETM 7 (MIR) ... 83
15 Tabellenverzeichnis

Tabelle 1: C-Bestände Russlands 1990 (aus NILSSON ET AL. 2000) ... 13
Tabelle 2: NPP ausgewählter Landbedeckungs- klassen (aus NILSSON ET AL. 2000) .. 13
Tabelle 3: Die Landsat-Systeme im Überblick (aus IRISH 1998)... 16
Tabelle 4: Sensoren der Landsat-Satelliten (aus IRISH 1998) .. 16
Tabelle 5: Hauptanwendungen der Spektralkanäle des Thematic Mapper (aus LILLESAND UND KIEFER (2000), ergänzt durch SCHARDT (1990)) ... 19
Tabelle 6: Hochauflösende Sensoren (aus PETRIE 2002) ... 23
Tabelle 7: Die wichtigsten Radarbänder mit ihrem Frequenz- und Wellenlängenbereich 25
Tabelle 8: Parameter der wichtigsten SAR-Systeme der letzten Jahre. (aus LILLESAND UND KIEFER 2000) 26
Tabelle 9: Kanalkombinationen der verwendeten Vegetationsindizes .. 41
Tabelle 10: Korrelationskoeffizienten (r) und lineare Regressionen zwischen Vegetationsindizes und Biomasse für die verschiedenen Bestandstypen ... 41
Tabelle 11: Hauptmerkmale der Testflächen .. 55
Tabelle 12: Satellitenbildparameter .. 56
Tabelle 13: Genauigkeit der Inventurdaten, Angaben in Prozent Abweichung (aus IIASA 1999) 58
Tabelle 14: Abzug der Werte in den einzelnen Kanälen .. 69
Tabelle 15: Lagefehler des DGM von ausgewählten Punktpaaren ... 66
Tabelle 16: Abzug der Werte in den einzelnen Kanälen .. 69
Tabelle 17: Einteilungen in Volumsklassen und nach Laub- und Nadelholzanteil .. 72
Tabelle 18: Anzahl der Passpunkte und Restfehler .. 63
Tabelle 19: Abzug der Werte in den einzelnen Kanälen .. 69
Tabelle 20: Wertebereich des NDVI .. 69
Tabelle 21: Wertebereich des Ratiokanals ETM 5/ETM 2 ... 70
Tabelle 22: Kanalkombinationen der verwendeten Vegetationsindizes .. 41
Tabelle 23: Vergleich der mittleren Grauwerte der Vegetationsindizes (Anteil ≥ 9/10) in verschiedenen Kanälen vor und nach der Luftlichtkorrektur .. 87
Tabelle 24: Segmentierungsparameter in eCognition mit den gewählten Einstellungen für die Bildung der Unterebene für die Texturanalyse .. 90
Tabelle 25: Korrelationskoeffizienten (r) und lineare Regressionen zwischen Vegetationsindizes und Biomasse für die verschiedenen Bestandstypen ... 41
Tabelle 26: Texturparameter „Mittlere durchschnittliche Differenz zu den Nachbarobjekten“ (Avrg. Mean Diff. to Neighbors of SO) in ETM 4 (NIR) und ETM 8 (pan). Für 4 Baumartengruppen in der Testfläche NO berechnet ... 92
Tabelle 27: Texturparameter „Mittlere Standardabweichung der Unterobjekte“ (Mean of SO: StDev) in ETM 4 (NIR) und ETM 8 (pan) sowie deren Standardabweichungen. Für 4 Baumartengruppen in der Testfläche NO berechnet ... 92
Tabelle 28: Gewichtsmatrix zur Berechnung des κ_1 für fünf Klassen .. 100
Tabelle 29: Fehlermatrix, κ_2 und κ_3 für die Klassifikation nach Baumartengruppen in der Testfläche SW 101
Tabelle 30: Fehlermatrix, κ_2 und κ_3 für die Klassifikation nach Baumartengruppen in der Testfläche SO 102
Tabelle 31: Fehlermatrix, κ_2 und κ_3 für die Klassifikation nach Baumartengruppen in der Testfläche SO; berechnet aus der Klassifizierung der Unterobjekte .. 104
Tabelle 32: Fehlermatrix, κ_2 und κ_3 für die Klassifikation nach 9 Volumsklassen in der Testfläche SW 107
Tabellenverzeichnis

Tabelle 33: Fehlermatrix, κ und κ_w für die Klassifikation nach den 5 zusammengefassten Volumklassen in der Testfläche SW .. 107

Tabelle 34: Fehlermatrix, κ und κ_w für die Klassifikation nach 9 Volumklassen in der Testfläche SO 108

Tabelle 35: Fehlermatrix, κ und κ_w für die Klassifikation nach den zusammengefassten Volumklassen in der Testfläche SO ... 109

Tabelle 36: Vergleich der Genauigkeiten der Klassifizierungen mit bzw. ohne Baumarteninformation für die Testfläche SO .. 111

Tabelle 37: Vergleich der Genauigkeiten der Klassifizierungen mit bzw. ohne Baumarteninformation für die Testfläche SW ... 111

