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Abstract

Various regions in Europe have suffered from severe flooding over the last decennium. Earth observation techniques can
contribute toward more accurate flood hazard modelling and they can be used to assess damage to residential properties,
infrastructure and agricultural crops. For this study, detailed land cover maps were created by using IKONOS-2 high spatial
resolution satellite imagery. The IKONOS-2 image was first divided into segments and the land cover was classified by
using spectral, spatial and contextual information with an overall classification accuracy of 74%. In spite of the high spatial
resolution of the image, classes such as residential areas and roads are still fairly difficult to identify. The IKONOS-2-derived
land cover map was used as input for the flood simulation model LISFLOOD-FP to produce a Manning roughness factor
map of inundated areas. This map provides a more accurate spatial distribution of Manning’s roughness factor than maps
derived from land cover datasets such as the EU CORINE land cover dataset. CORINE-derived roughness maps provide only
averaged, lumped values of roughness factors for each mapping unit and are hence less accurate. Next, a method to produce
a property damage map after flooding is presented. The detailed land cover map, water depth estimates resulting from the
LISFLOOD-FP model, and known relations between water depth and property damage yielded a map of estimated property
damage for the 1995 flood which affected the villages of Itteren and Borgharen in the southern part of The Netherlands. Such
a map is useful information for decision makers and insurance companies.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Over the last 10 years dramatic river flooding has
affected various regions all over the world. Examples
of such massive floods are the Meuse (The Nether-
lands in 1993), the Rhine and the Meuse (The Nether-
lands, Belgium and Germany in 1995 and 1996), the
Oder (Czech Republic, Poland and Germany in 1997),
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the Tisza (Hungary and Rumania in 2000), various
rivers in Yorkshire and Midlands (UK in 2000), the
Po (Italy in 2000), the Elbe and Styre (Germany and
Austria in 2002) and the Gard (France in 2002). Hy-
drologic flood modelling at the spatial scale of a river
basin is a useful tool to understand the causes of
flood events. Different kinds of models to simulate
flooding and runoff have been developed in the past
decades. An important parameter in these models is
the (Manning) roughness coefficient which comprises
a flow resistant factor and a function of land cover in
flooded areas (De Roo, 1999; De Roo et al., 1999a).
This specific factor is difficult to determine because
detailed and actual land cover information is usu-
ally not available. Furthermore, for the assessment
of property damage caused by a flood, a flood ex-
tent map and a flood depth map must be combined
with a detailed land cover map. Early property dam-
age assessment and accurate modelling of flood events
require that private-owned objects, agricultural land
use and infrastructure are identified on a land cover
map.

The areas most vulnerable to damage by flooding
are urban landscapes. Urban landscapes are composed
of varied materials (concrete, asphalt, metal, plastic,
glass, shingles, water, grass, shrubs, trees, and soil)
arranged by humans in complex ways for the con-
struction of houses, transportation systems, utilities,
commercial buildings, gardens, parks, playgrounds
and other recreational landscapes. Land cover maps
are readily available in different classification sys-
tems and scales throughout the world but seldom at
the required spatial detail. Another constraint is that
these land cover maps are not interchangeable, while
flood events very often occur at transnational level. A
good and promising alternative is to derive land cover
maps from earth observation images. Images are col-
lected at various spatial resolutions and are frequently
available. With the launch of IKONOS-2 in Septem-
ber 1999, one-meter resolution panchromatic and
four-meter multi-spectral images became available.
Image analysis at this spatial resolution enables the
identification of urban and sub-urban objects. A spa-
tial resolution of 0.25 m to maximum 5 m is generally
thought to be sufficient to detect or distinguish types
of buildings and individual buildings (Jensen and
Cowen, 1999). IKONOS-2 fulfils these requirements.
In practice however, it proves difficult to classify

these high-resolution images on a pixel-by-pixel basis
due to the high level of information captured by these
images (Blaschke and Strobl, 2002; Hofmann, 2001;
Limp, 2002; De Jong et al., 2000). Important seman-
tic/spatial information required to interpret the image
is not accounted by the pixel-by-pixel classification
algorithms. In the past two decades various segmen-
tation techniques have been developed to incorporate
context, or neighborhood information, in the image
classification procedure e.g.Roberts, 1970; Ballard
and Brown, 1982; Tilton, 1989and Janssen, 1994.
Most of these methods are experimental or developed
for research experiments only (Schoenmakers, 1995;
Wilson and Spann, 1988). The new software package
eCognition (eCognition, 2002)brings together several
of these contextual and object-oriented approaches
and gives promising results for high-resolution image
analysis. The new method used in this study first ex-
tracts image objects by segmentation. The segments
are subsequently classified using combinations of
spectral and spatial information (Baatz and Schäpe,
2000). The objective of this study is to investigate
the usefulness of high spatial resolution IKONOS-2
imagery and segmentation algorithms to produce de-
tailed land cover maps for flood damage assessment
as well as detailed maps of roughness coefficients for
flood simulation models.

2. Study area

The study site selected is located in southern part
of The Netherlands around the villages of Itteren
and Borgharen and approximately 10 km north of
the city of Maastricht as shown inFig. 1. The area
measures approximately 16 km2 and comprises agri-
cultural land, residential areas and a few industrial
sites. East of the flood plain of the river is a canal (the
Julianakanaal) which was constructed to allow ships
to bypass shallow parts of the river. The two villages
of Itteren and Borgharen are located in the flood plain
of the river. In January 1995 severe flooding of the
Meuse inundated the entire area between the Meuse
and the canal and wreaked significant damage on the
two villages and the agricultural activities (Fig. 1).
Details about financial or local economic losses are
not available for this flood except that the total fi-
nancial damage including evacuation costs for The
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Fig. 1. Location of the study area (left) and the area as registered by IKONOS-2 (right).

Netherlands and Belgium was estimated at3.5 bil-
lion. In The Netherlands individuals and enterprises
are generally not insured against water damage due
to flooding.

3. Image analysis

The image used in this study for detailed land
cover mapping is a ‘pan-sharpened’ multi-spectral



220 C.J. van der Sande et al. / International Journal of Applied Earth Observation and Geoinformation 4 (2003) 217–229

IKONOS-2 image acquired on 6 May 2000. A subset
image was created and centred over the villages of
Itteren and Borgharen.Table 1provides detailed char-
acteristics of the IKONOS-2 image used in this study.

A land use classification scheme was designed for
the study area and appropriate for the IKONOS-2 im-
age. The basis for this scheme was adapted from the
land use classification system of the ‘United States Ge-
ological Service (USGS) land use and land cover clas-
sification system for use with remotely sensed data’
proposed byAnderson et al. (1976). This system is
designed to use four levels of information, levels I and
II are specified by the USGS. The user specifies lev-
els III and IV, keeping in mind that the categories in
each level must aggregate into the categories in the
next higher level. The category in level III was created
for satellite data having a resolution ranging from 1
to 5 m. Level III is the appropriate level of scale for
the IKONOS-2 image. Level IV is the category for re-
motely sensed imagery with a resolution of 0.3–1.0 m
i.e. aerial photography.Table 2provides an overview
of the land cover classes and the different level of
scales as applied to this study.

Image classification is the process of assigning in-
dividual pixels or groups of pixels to thematic classes
(Richards, 1999). Supervised classification requires

Table 2
Land use classification system for the IKONOS-2 image

Level I Level II Level III

(1) Urban/built-up land (11) Residential (111) Residential building
(112) Private/public garden
(113) Grass in built-up area
(114) Pavement/other urban area
(115) Water side

(13) Industry (131) Sand deposit area
(14) Transportation, communications, and utilities (141) Road

(143) Railroad
(15) Industrial and commercial complexes (151) Industrial company

(2) Agricultural land (21) Cropland and pasture (211) Pasture
(212) Winter wheat

(22) Orchard, groves, vineyards, nurseries, and horticultural areas (221) Nursery

(24) Other agricultural land (241) Fallow

(3) Rangeland (33) Mixed rangeland (331) Natural vegetation
(4) Forest land (41) Deciduous forest land

(42) Mixed forest land
(5) Water

Table 1
Image specifications of the IKONOS-2 image of Itteren and
Borgharen

Image specifications
Acquisition date and time 6 May 2000 at 10.31 a.m.
Spatial resolution 1 m panchromatic sharpened

multi-spectral bands
Spectral wavebands 0.45–0.53�m (blue),

0.52–0.61�m (green),
0.64–0.72�m (red),
0.77–0.88�m (near IR)

Data format 2048 grey levels (11 bits)
Solar elevation angle 53.8◦
Solar azimuth angle 154.1◦
Map projection Universal transverse mercator
Nominal azimuth collection 248.8◦
Nominal elevation collection 80.1◦
Processing level Standard geometrically corrected

General information
Ground track revisit time 11 days
Revisit time for imaging 3.2 days at 1 m resolution; 1

day at 2 m resolution
Altitude 682 km sun-synchronous orbit
Inclination angle 98.1◦
Orbit time 98 min
View angle Nadir
Swath width 11 km
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‘ground truth’ data from any source to direct the
classification process. The essential five steps of a
supervised image classification are: (1) decide on the
ground cover types to be classified such as water,
urban areas, agricultural croplands, etc.; (2) choose
prototype pixels with known land cover to form train-
ing data on the basis of site visits, maps and aerial
photographs; (3) define the set of parameters of that
class i.e. the spectral signature and/or the spatial char-
acteristics; (4) classify every pixel in the image using
a user-defined classification algorithm; and (5) evalu-
ate the obtained accuracy. As the traditional per-pixel
classification methods are not very suited for the
new higher-resolution data due to their large, detailed
information content (Blaschke and Strobl, 2002;
Hofmann, 2001; Limp, 2002; De Jong et al., 2000)
we decided to use an image classification approach
that does not only account for spectral information
but also for local patterns in the image by a group of
neighboring pixels. The segmentation techniques de-
veloped over the past decades can broadly be divided
into three categories (Ballard and Brown, 1982): (1)
edge-finding (Roberts, 1970); (2) region-growing
(Tilton, 1989); and (3) map or knowledge-based seg-
mentation (Janssen, 1994). The method used here is
an advanced region-growing and knwoledge-based
segmentation approach. The algorithms are based on
the conceptual idea that important semantic informa-
tion required to interpret an image is not represented
in single pixels but in meaningful image objects
and their mutual relations, i.e. the context. The seg-
mentation algorithm is a bottom-up region-growing
technique starting with one-pixel objects. In many
subsequent steps smaller image objects are merged
into larger ones (more pixels). The growing decision
is based on local homogeneity criteria describing the

Table 3
Segmentation parameters used for the analysis of the IKONOS-2 image

Segmentation and
classification level

Land use types IKONOS bands used Scale Homogeneity criterion

Blue Green Red NIR Color Shape Shape settings

Smoothness Compactness

Level I All Yes Yes Yes Yes 5 0.7 0.3 0.9 0.1
Level II Buildings No Yes Yes Yes 10 0.5 0.5 0.9 0.1
Level III Roads No Yes Yes Yes 30 0.5 0.5 0.9 0.1
Level IV Agriculture, water, large

buildings and roads
No No Yes Yes 100 0.9 0.1 0.9 0.1

similarity of adjacent image objects in terms of size,
distance, texture, spectral similarity and form (Baatz
and Schäpe, 2000). User-defined thresholds are inter-
actively used to decide whether objects are merged
into larger objects or not (eCognition, 2002). The
procedure of growing stops when merges obeying the
user’s criteria are no longer possible. The first step
in the image analysis was to generate homogeneous
objects or segments on the basis of the four spec-
tral bands and contextual information. Four levels of
segmentation steps proved to give the optimal classi-
fication results. At each level it is possible to extract
specific thematic classes from the image.

Table 3shows the segmentation parameters used as
relative values and as a function of thematic land cover.
As shown inTable 3the spectral bands can either be
included or excluded from the segmentation process
as a function of their information content. The scale
parameter was the most important factor to control the
size of the objects. Color and shape were weighted
according to the type of thematic land use. The set-
tings of the shape parameter appeared to provide per-
tinent information with respect to the land cover and
were therefore assigned a high impact value. Segmen-
tation at level IV was used to classify the larger ob-
jects in the study area such as agricultural fields and
water bodies. The red and near-infrared spectral bands
were used together with the homogeneity criterion for
the classification of vegetation types, crops as well as
water bodies (Table 3). Small roads were extracted
from segmentation at level III using the green, red
and near-infrared spectral bands and the homogene-
ity and shape criteria. Buildings were extracted from
level II, where a scale parameter of 10 resulted in ob-
jects small enough to differentiate individual houses.
In the next step of the image analysis the various
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segmentation levels are classified using ‘ground truth’
information on the basis of the land cover scheme pre-
sented inTable 2. Ground truth information was col-
lected from field visits, topographical maps and aerial
photographs. The strength of the new object-oriented
approach is that apart from spectral features, it also
uses local spatial features such as surface area, length
and width of objects during the classification process.
Moreover, the ability to use relations between neigh-
boring objects and relations between objects classified
at different levels with finer or courser segments was
useful during image classification.

Vegetation cover is classified in level IV. Decid-
uous forest is classified using spectral information
and object-related properties. Deciduous forest is quite
heterogeneous compared to other vegetation classes
like winter wheat or meadows due to shade and gaps
in the forest canopy. This heterogeneity is accounted
for by the high standard deviation in the near-infrared
spectral band. In the study area several tree nurseries
are found and these nurseries have similar spectral
characteristics as a deciduous forest. However, the spa-
tial arrangement of trees in a nursery is different be-
cause the trees are planted in straight rows. These rows
of trees were identified by a ratio of length and width
of the object and could easily be distinguished. Roads
were also classified using the length/width informa-
tion in level III and IV. Houses are related to black
segments i.e. shadow in the image. All objects with
spectral values of a house and their position next to
a dark shadow object are accordingly correctly clas-
sified as a house. After careful evaluation of the var-
ious intermediate results the classification results per
level are merged into level I and exported as a the-
matic land cover layer. In the next section of this ar-
ticle the obtained accuracy of the land cover classifi-
cation, the methods to assess flood damage using the
IKONOS-2-derived land cover map and roughness pa-
rameters are presented and discussed.

4. Results

4.1. Land cover map

The land cover map of the study area resulting from
the object-oriented image classification approach is
presented inFig. 2. It is impressive to see the amount

of detail concerning agricultural crops and residential
areas captured in this image acquired at an altitude
of 682 km. Individual buildings and parcel boundaries
can easily be identified. The error matrix of the image
classification was computed to determine the accuracy
of the land cover map. The error matrix is based on
565 sample points and shown inTable 4. The over-
all accuracy of the classification is 74%. The KHAT
statistic, a measure of the difference between the ac-
tual agreement between reference data and an auto-
mated classifier and the chance agreement between
the reference data and a random classifier (Lillesand
and Kiefer, 2000), is 0.70. Results are quite good as
might be expected with this detailed imagery. The ac-
curacy for pasture, winter wheat, fallow and water are
very good, over 95% correctly classified. Some poorly
identified classes are gardens, grass within built-up ar-
eas, riverbanks, some roads, industrial areas and sand
deposit areas. Classification confusion occurs between
pasture and natural vegetation, roads and other pave-
ments and roads and residential buildings.

Comparing the total built-up surface area deter-
mined from the topographical map (1:25,000) and the
area classified in the IKONOS-2 image provided an
alternative assessment of the accuracy of the classi-
fication which turned out to be very good. The total
built-up surface area computed from the topographi-
cal map is 45,996 m2 and from the image 42,539 m2.
The built-up area derived from the topographical map
was overlaid with the built-up area extracted from the
IKONOS-2 image and yielded information about the
positional accuracy.Fig. 3presents these two built-up
areas side by side. Visual inspection and overlaying
revealed that the shape of the buildings is sometimes
different and that there are some small positional er-
rors. The buildings on the IKONOS-2 image show
irregular forms probably caused by blurring of the
spectral information of the image. At this moment
it is hard to determine the effects of the various
sources of errors such as geometric precision, absent
buildings on the topographical map and erroneous
classifications on the further analyses.

4.2. Improved flood risk assessment

Assessing flood risk can be achieved by using
high-resolution flood inundation simulations, such
as the flood plain (FP) modules available in the



C.J. van der Sande et al. / International Journal of Applied Earth Observation and Geoinformation 4 (2003) 217–229223

Fig. 2. IKONOS-2-derived land cover map for the Borgharen study area.

LISFLOOD model: LISFLOOD-FP (Bates and De
Roo, 2000; De Roo et al., 2000). LISFLOOD-FP
is a high-resolution flood inundation model whose
aim/objective is to simulate accurate flood extent and

Fig. 3. Comparison of buildings, in black, extracted from the
topographical map 1:25,000 and as classified in the IKONOS-2
image land cover classification in the southern part of the village
of Borgharen (seeFig. 1).

flood depth maps. The main inputs in the LISFLOOD
flood plain model are a high-resolution Digital Ele-
vation Model (DEM): 25 or 50 m horizontal grid or
better and a 10–20 cm vertical accuracy, an inflow
hydrograph, river geometry and a floodplain friction
factor such as the earlier-mentioned Manning’s rough-
ness factor n. The hypothesis tested here is whether a
more detailed floodplain friction map, derived from
the IKONOS-2 land cover map, would improve flood
risk estimations, as compared to the use of friction
maps obtained from a coarser, EU CORINE land
use map. The LISFLOOD-FP simulation model was
used to produce a maximum flood extent map for
the Meuse flood of January 1995 in the study area
surrounding the villages of Itteren and Borgharen. A
flood extent map from an air photo was available to
validate the model simulations as presented inFig. 4.
A flood extent map derived from an ERS-SAR mi-
crowave image (De Roo et al., 1999b) was also used
to compare model simulations. The extent of agree-
ment between the ERS-SAR flood extent map and
the model simulations agree is approximately 85%.
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Table 4
Error matrix of the IKONOS-2 land cover classification

IKONOS
classification

Ground truths

111 112 113 114 115 141 143 132 151 211 212 221 241 331 41 43 5 Users’ sum
accuracy

Class-map
accuracy

Residential building 111 18 0 0 3 0 3 0 0 0 0 2 0 0 0 0 0 0 260.69 0.44
Garden 112 0 10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 11 0.91 0.56
Grass in built-up area 113 0 1 12 1 0 1 0 0 0 0 0 0 0 0 1 0 0 16 0.75 0.63
Pavement/other urban 114 4 1 0 39 0 1 0 1 7 0 00 1 2 2 0 0 58 0.67 0.57
Waterside 115 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 20.50 0.25
Road 141 11 0 2 23 1 36 0 1 3 0 0 0 1 4 0 0 0 82 0.44 0.41
Railroad 143 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 41.00 1.00
Sand deposit area 1320 0 0 0 0 0 0 7 0 0 0 0 0 0 0 0 0 71.00 0.50
Industrial company 151 0 0 0 10 0 0 0 5 17 0 0 0 0 0 0 0 0 32 0.53 0.40
Pasture 211 0 5 1 2 0 0 0 0 0 123 0 1 1 22 8 0 0 1630.75 0.74
Winter wheat 212 0 0 0 0 0 0 0 0 0 1 37 0 0 0 0 0 0 380.97 0.80
Nursery 221 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 51.00 0.83
Fallow 241 0 0 0 0 0 0 0 0 0 1 0 0 42 0 0 0 0 430.98 0.89
Natural vegetation 331 0 0 0 0 0 0 0 0 0 0 3 0 0 4 0 0 0 70.57 0.10
Deciduous forest 41 0 0 0 0 1 0 0 0 0 2 3 0 0 3 23 1 0 330.70 0.52
Mixed forest 43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 61.00 0.86
Water 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 32 321.00 1.00

Sum 33 17 15 78 3 41 4 14 27 127 45 6 46 36 34 7 32 565

Producers’ accuracy 0.55 0.59 0.80 0.50 0.33 0.88 1.00 0.5 0.63 0.97 0.82 0.83 0.91 0.11 0.68 0.86 1.00
Overall accuracy 0.74
KHAT accuracy 0.70
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Fig. 4. Flood extent maps derived from various sources for the Borgharen study site shown inFig. 1. Black indicates inundated areas.
From left to right: flood extent mapped from (1) an aerial photo; (2) from an ERS-SAR microwave image. Flood extent modelled by the
LISFLOOD-FP model (De Roo et al., 1999b) using (3) one Manning’sn value for the entire flood plain; (4) Manning’sn derived from
the EU CORINE land cover data; (5) Manning’sn derived from the Dutch LGN-3 land cover data and (6) Manning’sn derived from
IKONOS-2 land cover map.

The characteristics of the DEM and the friction in
the flood plain (Manning roughness coefficient) con-
trol the flood extent on the flood plain during the
simulations. Fixed Manning roughness coefficients
(value of 0.060) would normally be assigned to each
land cover class (Bates and De Roo, 2000). Coarser
land use maps used for model runs are the European
CORINE land cover map with a 100 m resolution and
the Dutch LGN-3 (Thunnissen and De Wit, 2000)
land cover map with a 25 m resolution. Here, the use
of IKONOS-2 to produce a more detailed Manning
floodplain friction map on the basis of derived land
cover is investigated and compared with other simu-
lations. Manning’s values used for specific land cover
are listed inTable 5. The flood extent map created
with the IKONOS-2-derived Manning information
was compared with the flood extent map created
with a fixed Manning coefficient. Moreover, the LIS-
FLOOD model runs were compared to investigate
whether the adjusted Manning coefficient resulted in
other simulated values of discharge and water depth.

Changing the floodplain Manning coefficient re-
sulted in significant differences of the flood simula-
tions.Table 6shows the computed accuracy values of
the different flood extent maps compared with an air-
photo interpretation map as ground truth. The accu-
racy of the derived flood extent maps is high, but it
should be noted that when only two classes (flooded,
non-flooded) are used, the probability of obtaining
good classification results just by chance is high. As
a result, the KHAT values are quite modest in spite of
the good values of overall accuracy. As discussed in

Bates and De Roo (2000)the LISFLOOD model with a
lumped Manning coefficient performs rather satisfac-
torily. The spatial adjustments to the Manning coeffi-
cient by using the land use maps of CORINE, LGN-3
(Thunnissen and De Wit, 2000) and the map derived
from IKONOS-2 show varying results.Fig. 4 shows
the different flood extent maps. The hydrograph and

Table 5
Manning roughness coefficients

Land use classes Manning
roughness
coefficient

Source

(111) Residential building 0.200
(112) Private/public garden 0.100 Chow (1959)
(113) Grass in built-up area 0.259 De Roo (1999)
(114) Pavement/other

urban area
0.050

(115) Waterside 0.050
(131) Sand deposit area 0.120 De Roo (1999)
(141) Road 0.013 Chow (1959)
(143) Railroad 0.033 Chow (1959)
(151) Industrial

company/agency
0.200 Chow (1959)

(211) Pasture 0.259 De Roo (1999)
(212) Winter wheat 0.127 De Roo (1999)
(221) Nursery 0.200 Beasley and Huggins

(1982)
(241) Fallow 0.120 De Roo (1999)
(331) Natural vegetation 0.100 Chow (1959)
(41) Deciduous forest land 0.200 Beasley and Huggins

(1982)
(43) Mixed forest land 0.200 Beasley and Huggins

(1982)
(5) Water 0.030 Chow (1959)
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Table 6
Accuracy values flood extent maps

SAR-snake LISFLOOD-basis LISFLOOD-corine LISFLOOD-lgn LISFLOOD-Ikonos

Producers’ accuracy 0.83 0.98 0.96 0.93 0.92
Users’ accuracy 0.91 0.91 0.93 0.91 0.92
Map accuracy (water) 0.77 0.89 0.89 0.85 0.85
Map accuracy (not water) 0.55 0.61 0.62 0.54 0.55
Overall accuracy 0.82 0.91 0.91 0.87 0.87
KHAT accuracy 0.58 0.70 0.71 0.62 0.63

water depth of the outlet of the river channel showed
that the rising and falling limbs of the four simulations
were approximately the same.

The conclusion of these simulations is that the flood
extent map produced by using the IKONOS-2 image
to obtain a floodplain friction map differs from the
other simulations only at a limited number of loca-
tions. Based on the sparsely available reference data it
is difficult to judge which simulation is better. It seems
that in this case the extremely large amount of water
on the floodplain is the dominant factor for the flood
extent and not the local friction produced by objects. A
more detailed input map on floodplain friction derived
from IKONOS-2 will produce better spatial maps of
flood development (flow direction, water depth) over
the floodplain for less extreme events which is useful
information to understand the flooding process.

4.3. Flood damage assessment

Flood damage assessment methods which were de-
veloped since 1945 (White, 1945) were initiated by
governments and insurance companies. The methods
vary from fairly simple relationships between water
depth and estimated financial damage to rather com-
plex models requiring data on flood velocity, water
depth, building characteristics, cost of repair, people’s
behavior and estimates of indirect economic losses
(Penning-Rowsell and Fordham, 1994; HAZUS,
2001). The economic value of the land use type must
be known in order to calculate the real financial dam-
age. This value is normally based on the principle of
replacement value: what are the costs of replacing a
similar object? In this study, the land cover information
extracted from the IKONOS-2 image was used in com-
bination with water depth and the values of estimated
costs obtained from the literature to assess the damage

costs for the 1995 flood event. Water depth-damage
curves for each land cover class were collected
from the literature (Vrisou van Eck and Kok, 2001;
Kok, 2001; Penning-Rowsell, 2001; Staatscourant,
1998) and summarized inFig. 5 andTable 7.

The total estimated damage for the study area
was calculated by using combined information from
the flood extent map, the water depth during flood-
ing produced by the LISFLOOD simulation model,
the IKONOS-2-derived land cover map and the
depth-damage curves from the literature. The fol-
lowing assumptions were made to execute the flood
damage assessment:

• Damage functions are related only to water depth,
although flood damage is controlled by various
other variables.

Fig. 5. Damage functions between relative damage and water
depth. Source:Vrisou van Eck and Kok (2001); Kok (2001);
Staatscourant (1998).
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Table 7
Maximum flooding damage values collected from the literature

Land use class Maximum
damage per
square meter
in 1995 ( )

Source

Winter wheat 0.13 Staatscourant (1998)
Roads 15.74 Vrisou van Eck and Kok (2001)
Industry 68.07 Kok (2001)
Residential 1861.90 Vrisou van Eck and Kok (2001)

• The price level of 1995 was taken as a standard.
• Damage to cars was not considered here as the flood

event was announced and the majority of cars were
removed before the flood arrived.

• Previous analysis of data of Meuse flooding (Kok,
2001) showed that municipalities which are fre-
quently inundated sustain generally less damage per
house than municipalities with less frequent flood
events: ‘people are less prepared’. This factor was
not considered here.

• The variability of average damage per land cover
class is considerable. Damage is a function of many
physical and behavioral factors. In this study, we
used average values of damage estimates.

Fig. 6. Estimated financial damage map based on the IKONOS-2
land cover map. Graduated color map; dark red: high damage rates,
light red: low damage rates; white: no damage or no information.

Table 8
Estimated damage values for the IKONOS-2-derived land cover
map and computed water depth by the LISFLOOD model

Land use classes in the
Borgharen area

Estimated damage
( × 1000)

(111) Residential building 66625
(112) Private/public garden 1252
(113) Grass in built-up area 0.68
(114) Pavement/other urban area 313
(115) Waterside 80
(141) Road 2650
(143) Railroad 0
(151) Industrial company/agency 314
(211) Pasture 36
(212) Winter wheat 109
(221) Nursery 646
(241) Fallow 0
(331) Natural vegetation 0
(41) Deciduous forest land 0
(43) Mixed forest land 0
(5) Water 0

Total amount of damage ( × 1000) 72030

Fig. 6 shows the spatial distribution of the esti-
mated property damage in the study area under the
assumptions listed above. The most significant dam-
age was sustained in the southern, upstream village of
Borgharen.Table 8shows the estimated damage per
thematic land cover class. Residential properties ac-
count clearly for the majority of the costs and might
ultimately lead to a resettlement of the villages be-
yond the floodplain. Although the damage estimates
seem fairly reliable, the obtained accuracy is a func-
tion of the reliability of the available damage func-
tions discussed previously, the estimated price level,
the computed water depth in the model and the accu-
racy of the land cover derived from IKONOS-2. The
presented method to calculate flood damage is fast,
straightforward and easy to implement for local or re-
gional governments and insurance companies.

5. Conclusions and recommendations

Flooding is a major environmental threat as may be
proven by the many flooding events worldwide over
the last 10 years. Earth observation techniques may
contribute significantly to improve our efforts to model
flood events, to develop proper mitigation strategies
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and to assess damage to residential properties, infras-
tructure and agricultural crops. Detailed and reliable
land cover maps are required for these applications.
The new generation of high spatial resolution satellite
sensors such as those aboard IKONOS-2 are suitable
instruments to provide that information. In this article
we presented a methodology to analyze IKONOS-2
data by combining the use of spectral, spatial and
contextual information captured by the image to pro-
duce an accurate land cover map. Overall accuracy of
the classification is 74%. In spite of the good results
of land cover mapping a number of classes such as
residential areas and roads are still fairly difficult to
identify.

The IKONOS-2-derived land cover map proved a
valuable tool to integrate with flood simulation models
to produce detailed Manning roughness factor maps
of the inundated areas and to simulate flow velocity.
IKONOS-2-derived maps are more accurate for flood
simulations and property damage assessment than the
maps derived from datasets such as the EU CORINE
land cover map. An indicative map presenting the es-
timated damage for 1995 flood event was produced
for the Itteren and Borgharen region on the basis of
land cover, water depth extracted from the LISFLOOD
model and by known relations between water depth
and property damage. Such a map is useful informa-
tion for decision makers and insurance companies.
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