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ABSTRACT 
 
This study investigated the use of high-resolution multispectral imagery and small-footprint, multi-return LiDAR 
(Light Detection And Ranging) for tree and stand attribute estimation in a bottomland hardwood stand in East 
Mississippi.  The multi-spectral images were acquired in June 2001 with a spatial resolution of 0.3 m (0.98 ft) in 
four bands (near-infrared, red, green, and blue).  The LiDAR data were acquired in September 1999 using a five 
return, 15 kHz scanning sensor with a 20° field-of-view, one pulse per 3.45 square meters (37.17 sq. ft), and 0.6 m 
(~2 ft) approximate footprint diameter configuration.  Field data were collected yielding height and crown radii 
values for 133 dominant/codominant trees along with trees per fifth acre (0.08 ha) plot values for 45 plots.  Tree 
heights were extracted using a unique, non-overlapping crown polygon method while object-oriented analyses were 
performed to isolate crown extents, tree density, and species classification.  Comparisons between field and 
remotely sensed metrics were performed through a variety of parametric and descriptive statistics.  While height and 
classification results performed moderately well, the complexity of horizontal hardwood canopy structure hindered 
the automated tree recognition approach, which in turn led to poor crown extent and tree density estimation results. 
 
 

INTRODUCTION 
 

Light Detection And Ranging (LiDAR) is a relatively new tool in the remote sensing arena which many hope, 
along with more tested remote sensing technologies such as Multispectral (MS) imagery, will give natural resource 
managers an effective way to observe and note desired forest characteristics for a given area, particularly in the 
vertical domain.  This vertical data usually culminates into a set of vegetation height values (i.e., returns or 
interpolated raster surfaces), which are computed from x, y, and z return data that is differenced, with respect to z, 
from a corresponding ground-level, base dataset (i.e., Digital Terrain Models (DTMs) or Digital Elevation Models 
(DEMs)).  The use of this vertical LiDAR-derived and corresponding MS data is limited, however, when they are 
applied to hardwood stands at the tree-level.  This is due to the complexity of hardwood stands and trees with regard 
to their vertical and horizontal structure (Yang, 1999). 

Past projects using LiDAR data in forested conditions have dealt mostly with coniferous stands where 
uniformity in stand characteristics is more prevalent than in most uneven-aged, hardwood stands found throughout 
the southeastern portion of the United States.  This degree of vertical and horizontal variability found in hardwood 
stands makes LiDAR utilization more complex and in need of further investigation.  Similarly, many of these past 
works focused on the stand or landscape scales, as opposed to the individual tree-level.  Previous studies also used 
either small-footprint (usually with smaller scaled areas) or large-footprint (usually with larger scaled areas) LiDAR 
systems (Means, 2000).  Aside from the obvious differences in their names alluding to footprint size (the horizontal 
diameter of the light beam as it reaches the target), these systems also vary in the manner in which they record data.  
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Large-footprint systems usually record reflectance by digitizing, over small intervals, the amount of energy returned 
to the LiDAR sensor.  These data form a more continuous stream per light pulse as compared to small-footprint 
systems, which record reflectance in the form of discrete returns.  These returns are simple locations of points where 
some reflectance threshold was reached and recorded by the sensor yielding one or more (multi-return) returns per 
pulse (Wehr and Lohr, 1999).  The decision of which system to employ is usually made depending on what data are 
desired for the mission at hand.  Generally, large-footprint systems have been used in landscape scale studies, 
whereas small-footprint, multi-return systems are usually used in smaller areas of focus (Means, 2000).  With these 
standards in mind, a small-footprint, multi-return system was used in this project. 

Overall, this study focused on comparing integrated small-footprint, multi-return LiDAR and high resolution 
MS data acquired over a hardwood bottomland in eastern Mississippi to corresponding ground data gathered in 
order to quantify the individual tree attribute relationships between the two datasets.  The tree attributes examined 
were species, tree density, crown size, and total tree height.  The hope was to identify meaningful quantitative 
relationships, with the control variable being the field data, and use them in a manner where they may be statistically 
implemented to predict field conditions with a desired degree of confidence. 
 
 

METHODS 
 
Study Area 

The study area in this project was in an uneven-aged hardwood stand in East-central Mississippi within the 
bounds of the Noxubee National Wildlife Refuge in Noxubee County.  The site ranged from moderate to poorly 
drained conditions, indicative of those typically found in southern bottomlands.  This area contained a variety of 
species from loblolly pine (Pinus taeda L.) and cherrybark oak (Quercus pagoda Raf.) in the moderately drained 
areas to overcup oak (Q. lyrata Walt.) and baldcypress (Taxodium distichum (L.) Rich.) in the poorly drained areas. 
 
LiDAR Data 

LiDAR data for the study were obtained in September 1999 by EarthData Technologies.   The LiDAR system 
used included an Aeroscan sensor with a pulse wavelength of 1064 nm collected at a laser pulse rate of 15 kHz 
(Baltsavias, 1999), a scan rate of 10 Hz, a 20º field of view (10º maximum scan angle), and an average swath width 
of 698 m (2292 ft) at the desired aircraft altitude of approximately 2000 m (6600 ft) above target. This system could 
record up to five returns with the first being the closest to the sensor (usually tree crowns) and the last being the 
farthest (in many cases, the ground).  The provider reported upon data delivery that this system could yield vertical 
and horizontal accuracies within 15 cm.  The approximate mean pulse density was determined to be one pulse per 
3.45 m2 (37.17 ft2) on the ground with a footprint diameter of approximately 0.61 m (2 ft). 

Ground returns were differentiated from vegetation returns using proprietary software provided by the LiDAR 
contractor resulting in approximately 11% of the total LiDAR returns being assumed ground points.  Ground and 
first return datasets were then surfaced with ArcMap 8.1 (ESRI, 2001) utilizing the power and neighbor optimization 
Inverse Distance Weighted (IDW) methodologies, in ArcMap’s Geostatistical Analyst Extension.  The first return 
and ground surfaces were then differenced to yield a Canopy Height Surface (CHS). 
 
Multispectral Data 

Multispectral imagery was acquired for the study area by GeoVantage, Inc. in June 2001.  This dataset was 
taken using SONY XCD-SX900 digital cameras.  The four bands acquired were chosen using spectro-radiometer 
readings from another project in the Department of Foresry because they seemed sensitive to differentiating several 
hardwood species2.  The portion of the electromagnetic spectrum covered by this dataset encompassed the 488-498 
nm (blue), 546-556 nm (green), 668-678 nm (red), and 941-959 nm (NIR) wavelength intervals with an approximate 
spatial resolution of 0.3 m (0.98 ft).  This configuration required 45 images to cover the study area. 

A differential illumination problem was apparent in the delivered  MS imagery (i.e., vignetting and bidirectional 
reflectance (BDR)).  A method of empirical normalization was thus developed and applied 3, resulting in more 
homogeneous frame-to-frame spectral values among the MS images.  The imagery was then orthorectified to the 
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first-return LiDAR surface and mosaicked using ERDAS Imagine.  The contribution of each image to the final 
mosaic was defined by creating a set of cutlines which utilized Thiessen polygons centered at individual image 
principal points.  These cutlines excluded image edges that were represented by fewer pixels in the normalization 
procedure.  The cutlines were also modified so that misalignments and shadow discrepancies between images did 
not cause problems by splitting field-sampled crowns and plots into multiple image contribution areas.  
 
Field Sampling  

Field data was collected  using circular one-fifth acre (0.08 ha) plots located at three-chain intervals (198 ft ~ 
60.35 m) along lines spaced by ten-chains (594 ft ~ 181.05 m).  The lines were oriented perpendicular to the 
approximate centerline of a LiDAR swath from the study area.  This scheme resulted in a nine-plot width on each of 
ten lines.  This spacing yielded 90 total plots in the study area with half being reserved as alternates, and half 
designated as “takes”, or initial target plots. 

The “take” plots were located on every other line and initially considered for sampling.  The alternate lines 
permitted the replacement of a take plot falling in an undesirable area (e.g., a clearing, body of water, etc.) with an 
alternate plot located in either longitudinal direction (east or west) at the same approximate distance from the 
LiDAR swath center.  The goal was to collect a minimum of 45 forested sample plots. 

A real-time, differentially correcting Trimble AgGPS132 receiver linked to a Juniper Pro2000 field computer 
was used to navigate to plot center locations.  Using the OmniSTAR real-time satellite service, this DGPS 
(Differential Global Positioning System) unit permitted the location of plot centers at a reported accuracy of 
“submeter” (<3.28 ft) in the field.  

Traditional forest measurements were taken consisting of: Diameter at Breast Height (DBH) (on trees ≥ 4 in. or 
10.16 cm) to the nearest 0.1 in. (0.254 cm), total height to the nearest 0.1 ft (3.048 cm), and merchantable height (to 
an estimated 10 in. (25.4 cm) top diameter and ≥ 10 ft (3.048 m) to the nearest 0.1 ft).  Species and crown 
classification (dominant, codominant, intermediate, or suppressed) were also recorded.  DBH was measured with a 
diameter tape and distances were measured with either a “logger’s” tape or a Haglof Vertex III hypsometer.  The 
Haglof Vertex III (in its hypsometer capacity) was also used to measure tree heights.  

Each plot had to contain at least two crown data trees, which were trees that were classed as dominant or 
codominant and were the farthest from plot center in their respective Cartesian quadrant.  If this situation did not 
exist for a particular plot an alternate plot was taken longitudinally, ten chains away.  An Atlanta Optics laser 
rangefinder (mounted on a monopod with a built-in level) was used to obtain the distance and azimuth of each tree’s 
location.  Crown radii for these sample trees were measured in eight directions (north, northeast, east, southeast, 
south, southwest, west, and northwest).  Radii directions were obtained with a hand compass and radii lengths were 
found by using the DME mode on the Vertex III while visual alignment between the DME and crown edges was 
made using a seven-foot range pole.  This procedure yielded an overall measurement of 133 crowns. 

Coordinate data such as plot, tree, and crown extent locations were computed in a spreadsheet as Universal 
Transverse Mercator (UTM) values and converted into vector datasets using ARC/INFO 8.0.1.  The resulting Arc 
coverages were then built as either point features (e.g. tree and plot centers); polygon features, where no overlap was 
allowed (e.g. plot extents); or polygon region features, where feature overlap was allowed (e.g. crown extents).  
Other sample measurements (e.g. merchantable height, crown heights, DBH, species, plot number, and tree number) 
were saved to the individual spatial features as attributes.   
 
Remotely Sensed Metrics 

LiDAR Height Extraction.  The 133 field-measured tree crowns and CHS datasets were used in conjunction 
with a zonal maximum operation to extract LiDAR-determined tree heights.  The vector layer used in this process 
was constructed by using either the shortest distance from one of the eight vertices of an individual polygon or the 
closest vertex from a neighboring polygon, if an overlap existed, to the crown feature’s centroid.  This procedure 
created a set of Minimum Crown Extent Circles (MCEC), which intended to avoid height extraction from 
overlapping crown regions (Figure 1). The zonal attributes function in Imagine (ERDAS, 2001) was next used with 
the MCECs as the zonal dataset on the CHS to attribute LiDAR heights to sampled tree crown features. 

Tree Crown Identification.  Several methodologies were attempted, with little success, to isolate individual tree 
crowns in the remotely sensed datasets. These methods included: valley following approaches, similar to Gougeon 
(1995), and watershed analyses, similar to Hyypa and Inkenen (1999); edge detection or standard deviation models; 
crown template matching, similar to Quakenbush et al. (2001); and simple clustering techniques performed on the 
CHS and MS datasets.  Finally, the object-oriented approach in eCognition 2.1 was chosen to perform the individual 
crown analyses for this project. 
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Figure 1. A view of a set of Minimum Crown Extent Circles (dark gray) placed inside their corresponding field-

measured crown extents’ boundaries (light gray).  
 

In order to reduce processing time, object-oriented procedures were performed on a subset of the study area.  
Thus, a “partitioned-and-joined” subset was constructed by extracting data around each plot and manipulating the 
geographic coordinates of the subset so that they could be linked into a checkerboard-like pattern.  A block design 
was then utilized with the block size being determined by the between-plot distance on a given column.  This 
process yielded 45, three-chain (60.35 m) by three-chain blocks placed adjacent to each other. 

The first step in the eCognition procedure involved the definition and construction of image segments or 
objects.  These segmentation results were processed using a “bottoms up region-merging technique starting with 
one-pixel objects (Baatz et al., 2001).”  In this project, however, the multi-resolutional segmentation capability of 
eCognition was not utilized in the initial phases.  It was decided instead to find optimal segmentations at a single-
level before using multiple levels of segmentations due to the increased complexity caused by these procedures.  To 
initiate the single-level segmentation, the input raster layers were loaded into the system with corresponding image 
weights, homogeneity criteria, a scale parameter, and a segmentation mode. 

The MS and CHS datasets were used independently in the initial segmentation stage with combined trials being 
performed in later stages.  The independent MS step dictated that weights be set equal for each of the four bands 
from the two MS datasets (NIR = 1.0, red = 1.0, green = 1.0, and blue = 1.0), respectively, with the CHS dataset 
being ignored (weight = 0.0).  Since the CHS data was a single layer it was weighted individually with the MS 
weights being set to zero in its independent testing.  The combined weighting process for MS and the CHS datasets 
used five weighting combinations divided into odd-numbered proportions, each of which summed to one.  The MS 
weights for all four layers were the same and based on the MS data’s allotted proportion for the trial in question.   

The next step was to incorporate the homogeneity criteria into the segmentation process.  First, color versus 
shape criteria were assigned to form the spectral (which, in the case of the CHS dataset, was vertically spatial) 
differentiations essential to this type of object-oriented analysis.  This protocol involved assigning proportional 
weights (summing to one) to spectral values as opposed to object shape.  Next, the shape weight was partitioned 
between smoothness and compactness.  Large smoothness weights tended to yield more circular segments while 
large compactness weights tended to yield rectangular or square segments.  Color versus shape and smoothness 
versus compactness weights were examined by changing each pair of criteria at one-tenth (10%) intervals.  This 
process yielded 100 different segmentations with any protocol that held scale and layer weights constant. 

The segmentation mode and scale parameter were examined last.  The segmentation mode allowed for a normal 
(eight-neighbor kernel) or diagonal (four-neighbor kernel) option.  The normal mode was selected over the diagonal 
mode because the diagonal option was designed for extracting linear objects (Baatz et al., 2001), which was not the 
case among the sampled tree crowns.  The scale parameter was optimized through a heuristic approach.  This 
method’s results varied with different layer weights and homogeneity criteria, showing little consistency throughout 
the attempted trials.  When combined with the other criteria and weights, a large number of segmentation outputs 
were possible, leading to the importance of a visual decision–making system. 

Visually Examining Identified Tree Crowns.  A large number of segmentation routines were generated by the 
previous section’s procedures.  For this reason, the image segmentation process had to be narrowed by a protocol 
that was relatively fast and more substantial than purely aesthetic comparisons before any quantitative tests could be 
made.  The result was the development of a visual interpretation process conducted on all candidate segmentations 
before they were allowed to be quantitatively compared. 
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The interpretation process followed a stepwise manner, analyzing one segmentation with one color-shape 
weight and one smoothness-compactness weight combination in each step.  This segmentation was found by running 
several routines with the scale parameter being adjusted after each routine by comparing the segmentation output to 
50 randomly selected field-obtained crown polygons (from the original 133).  When the segmentation with the best 
match to the test crowns was displayed, the optimal scale was determined and a visual count (VC), enumerating the 
number of segments in the output that appeared to fit the 50 field measured test crowns, was recorded.  The VC 
values were recorded for each segmentation that was within the test interval with the exception of some that 
produced grossly poor object-to-tree polygon fits, visually. 

Following this testing, a minimum of five segmentation sets from each layer/weight combination were 
designated for quantitative comparison.  If a tie existed when choosing the minimum five, all segmentations with the 
same rank of the fifth best segmentation were allowed to be quantitatively compared.  These segmentations were 
then compared with another five chosen across all tested layer/weight combinations for ancillary testing.  With all 
segmentation parameters being held constant, except scale, these five segmentations’ parameters were processed 
over the subset dataset using two ancillary procedures.  These processes applied both a Binary Forest/Non-forest 
Raster (BFNR), which was created by thresholding the CHS dataset by 15 meters, mask and two-resolution (mulit-
resolution segmentation) methods.  The masking protocol segmented areas that were identified as forest canopy 
(using a 15 m canopy definition and the CHS), focusing segmentation operations on these specific areas of interest.   

The two-resolution method consisted of segmenting small crowns well at the first-level in the hopes that the 
large crowns would be correctly merged from the smaller segments comprising them, with the small segments that 
represented single crowns being maintained, in the second-level.  After quantitatively comparing all of these subset 
segmentations, including the two-resolution and BFNR masked methods, a final segmentation criterion set was 
isolated and applied to the entire (non-subset) study area’s datasets for final quantitative analysis. 

Tree Density Determination.  The BFNR was also used to mask the final and subset quantitatively tested 
segmentation layers to remove non-canopy segments and attribute them to corresponding plot vector layers.  
Comparisons of these tree-object counts to field-measured, plot-level dominant/codominant tree counts were made 
to test whether or not the object-oriented method would yield viable tree density measurements.  This testing was 
performed on all quantitatively examined segmentations mentioned above.  Since this process hinged on the tree 
crown identification phase, tree density was not considered a goal for guiding segmentation.  The assumption was 
that a procedure that accurately delineated individual tree crowns would also yield the best estimates of tree density. 

Tree Species Classification.  Species classification was performed on the non-subset, final segmentation using 
the CHS and MS datasets in the suite of classification functions in eCognition.  These functions were either 
computed in eCognition using object samples (training objects) through nearest neighbor calculations or manual 
definition by the user, via membership functions, categorizing these methods as supervised classifiers.  Seven target 
species were identified (baldcypress, cherrybark oak, loblolly pine, mockernut hickory (Carya tomentosa Poir. 
(Nutt.)), overcup oak, water oak (Q. nigra L.), and willow oak (Q. phellos L.)) for classification because they 
constituted 93.94% of the total merchantable volume sampled in the 45 field plots.  Subsequent testing samples, for 
use in an accuracy assessment, were also required to analyze the classification’s performance among these seven 
species.   

The number of samples needed in the two sample types (training and testing) was difficult to determine because 
of the newness of object-oriented classification methods.  Lillesand and Kiefer (2000) recommend a minimum 
training size of n + 1, where n is the number of bands, with a general accuracy testing suggestion of 50 samples per 
classification category in pixel-based supervised classification.  Since individual objects in eCognition’s 
classification scheme were treated similarly to pixels in pixel-based classification, these guidelines were accepted in 
the initial sample size determination.  These standards required supplemental crown sampling, which was performed 
in late 2002 and involved recording dominant or codominant tree crown centers belonging to one of the target 
species with the DGPS.  These locations were converted to polygon feature format using both the MS and CHS 
datasets to heads-up digitize the crowns where the individual DGPS points fell.  For this reason, these new features 
were designated for testing because the previously-measured field crown extents were deemed more spatially 
certain, a characteristic of greater importance for training samples.  These added crowns still did not meet the initial 
guidelines, but they were accepted for this project due to time constraints. 

 
 

RESULTS 
 
Field and LiDAR Tree Heights 

A paired t-test was initially performed on the 133 corresponding field and LiDAR measured tree heights to 
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determine if these two datasets were significantly different.  With a mean LiDAR height of 34.81 m (variance = 
10.25) and a mean field-derived height of 33.95 m (variance = 9.87), the heights were different (α = 0.05) with a t-
statistic equal to 4.21 and a critical t-value of 1.96. 
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SLR (Simple Linear Regression) was then applied to the paired heights to determine if a linear relationship 
existed.  This analysis used least squares fitting and was performed to detect the presence and significance of bias 
(β0) and slope (β 1) as well as model fit and correlation (R2) between the two height measures, all of which related to 
the predictability of field height from LiDAR height.  The resulting model had a R2 = 0.5296 and significant 

Figure 2. Simple Linear Regr

coefficients (α = 0.05) (both β0 and β1), demonstrating the validity of the model as a predictive tool (Figure 2). 
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The quantitative analysis of 83 (133 minu
n objects involved 55 quantitatively tested, 278 visually judged, and many heuristically tested segmentation 

routines.  Overall this study examined 44 single-level subset segmentation routines to identify the best five routines 
for two-level and BFNR-modified trials to produce a final (non-subset) segmentation.  This process yielded 16 
segmentation routines for final quantitative analysis.  Analysis results were examined using parametric and 
descriptive, non-parametric statistical values that were applied in the quantitative discrimination step. 

Non-parametric, descriptive statistics, relating to the proportional matching area between 
ents and field-measured tree crowns, were first created.  The three methods for determining these proportions 

were matched segment and crown overlap areas as a proportion of total segment area (commission errors), total 
crown area (omission errors), and summed mutually exclusive matched segment and crown areas in addition to 
matched overlap area (overall errors).  These values were also calculated using two different methodologies: (1) 
where each tree was weighted the same, yielding weighted error indices; and (2) where total crown areas were used, 
across all trees, yielding total error indices. 



 

The parametric methods employed to derive quantitative results used paired t-tests and SLR.  Differences 
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able 1.  Summary of the non-parametric crown area statistics (proportions) for the 44 initial quantitatively 
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een matched field and segment radii were tested using these methods with t-test derived observed signficance 
and fit statistics from the SLR coefficients.  Where multiple crowns were matched to the same segment, the largest 
crown was given the match and the other was not.   Because only matched segments were tested using these 
methods, the number of unmatched crown features were also included in the resulting tables. 

Non-parametric decision values for the 44 initial segmentations, displayed little sup
ined matched segmentation routines’ objects and crowns resemble each other in size.  Minimum and maximum 

(range), arithmetic mean, and median values among these routines indicated no trends of improvement among the 
various scale, layer, and criteria weight values (Table 1).  These values also did not display proportional matching in 
any routine greater than 0.60 in the overall, weighted and 0.31 in the overall, total categories.  The close proximity 
of the two measures of central tendency, mean and median, displayed changes of approximately five percent from 
the maximum overall assessment values in both weighted and total categories, indicating that there were no clear 
choices that could be made from these indices because the distribution of proportions was skewed toward the 
maximum end of the data range. 
 
T

tested single-level subset segmentation routines. 

V
Minimum 0.2939 0.5927 0.4479 0.2292 0.5237 0.1956 
Maximum 0.4356 0.8082 0.5946 0.3562 0.7404 0.3069 
Mean 0.3750 0.7239 0.5494 0.3002 0.6397 0.2566 
Median 0.3838 0.7252 0.5546 0.3099 0.6444 0.2603 
1 COM, OM, and ALL ons repr mmissio ion, an  errors u  weigh nd 

arametric decision values also displayed little support that the initially examined 44 matched segments and 
crow

Table 2.  Summary of the parametric crown radii statistics for the 44 initial quantitatively tested single-level 

 
SLR Analysis1 

 proporti esent co n, omiss d overall sing both ted (wt) a
total (tot) methods. 

 
P
ns resembled each other in size.  Similar to the non-parametric tests, minimum and maximum (range), 

arithmetic mean, and median values among these routines indicated no trends of improvement among various scale, 
layer, and criteria weight values (Table 2).  All paired t-test derived significance levels indicated that the crown and 
segment radii measures differed (α = 0.05).  The sole optimistic value was the maximum observed model 
significance (0.9930); however, this optimism was soon nullified with the R2 indices, which did not exceed 0.1997. 

 

subset segmentation routines. 

Value 
T-test Observed 

β0 β1 ficance R2 Significance Obs. Signi
Minimum 3.  0. 9 0  < 0.0001 4804 000 < 0.0001 .0000
Maximum 0.0054 5.8157 0.2850 0.9930 0.1997 
Mean 0.0002 4.6511 0.1430 0.2099 0.0489 
Median < 0.0001 4.6007 0.1498 0.0796 0.0419 
1 Using the model Rfield = β ect) 

The decision as to which of the five routines to choose for single-level BFNR-constrained and two-level subset 
trial

0 + β1(Robj
 

s was made using the overall, total values.  The two-resolution and BFNR-modified routines were created and 
analyzed in a similar fashion as, and ranked with, the initial 44 routines.  This process derived the same non-
parametric and parametric indices to determine which routine would be applied to the non-subset study area.  Again 
the overall, total values were used as the deciding factor and no trend of improvement along any criteria, weight, or 
scale lines was detected.  This process led to the use of a two-level routine (Table 3) with its layer, color, and 
smoothness weights being applied to the entire study area. 
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Table 3. Descriptive, non-parametric crown area comparisons among the best single layer subset 
segmentation routines (first five layers), the two-level subset routines (second five layers), the single-
level BFNR constrained subset routines (third five layers), and the final two-level non-subset 
segmentation (the last layer). 

 
Layer Name Weighted Comparisons Totaled Comparisons 

Layer COMwt
1 Rank2 OMwt

1 Rank2 ALLwt
1 Rank2 COMtot

1 Rank2 OMtot
1 Rank2 ALLtot

1 Rank2

L1_5971 0.3959 21 0.7884 2 0.5922 4 0.3439 8 0.7404 1 0.3069 6 
L5_5756 0.3908 26 0.7687 5 0.5797 10 0.3367 11 0.7005 5 0.2943 10 
L7_5772 0.4270 7 0.7622 8 0.5946 2 0.3562 6 0.6617 20 0.3013 8 
L7_5870 0.4356 3 0.7247 28 0.5802 8 0.3425 9 0.6574 23 0.2906 11 
L9_5545 0.3824 32 0.7209 31 0.5516 34 0.3420 10 0.6354 38 0.2859 12 
L1_26_3871 0.3996 15 0.7556 10 0.5776 12 0.3542 7 0.7072 4 0.3089 4 
L5_24_3556 0.4330 5 0.7664 6 0.5997 1 0.3343 13 0.7178 2 0.2955 9 
L7_26_3770 0.3454 45 0.7547 13 0.5500 36 0.3087 30 0.7080 3 0.2738 22 
L7_26_3872 0.4249 8 0.7203 32 0.5726 15 0.3599 5 0.6717 13 0.3061 7 
L9_26_3445 0.4446 2 0.7328 23 0.5887 6 0.3668 3 0.6859 8 0.3141 2 
L1_4071 0.4320 6 0.7470 17 0.5895 5 0.3612 4 0.6932 7 0.3114 3 
L5_4156 0.3482 43 0.6966 42 0.5224 47 0.2599 50 0.6650 17 0.2298 47 
L7_3672 0.4356 4 0.6830 47 0.5593 25 0.3669 2 0.6581 21 0.3081 5 
L7_3970 0.4164 10 0.6986 40 0.5575 28 0.3086 31 0.6640 18 0.2669 27 
L9_3545 0.3566 41 0.6365 53 0.4965 51 0.2775 42 0.6274 39 0.2382 43 
L9_26_4445 0.5000 1 0.6312 54 0.5656 19 0.4258 1 0.5663 54 0.3211 1 
1 COM, OM, and ALL proportions represent commission, omission, and overall errors using both weighted (wt) and 
total (tot) methods.  
2 Rankings compared to all 55 quantitatively tested segmentation routines  
*Layer names indicate the layer and its weight used, scale parameter(s), as well as color and smoothness weights, 
respectively (i.e., L9_26_4445 used the CHS (or “L” for LiDAR) weighted nine times greater than the MS data with 
a first-level scale of 26, a second-level scale of 44, a color weight of 0.4 and a smoothness weight of 0.5). 
 

The final segmentation layer ranked best with respect to the overall, total statistics, while ranking 19th with a 
difference of 3.4 % from the best ranked routine in the overall, weighted column among all 55 quantitatively tested 
routines.  The parametric statistics from all quantitatively assessed routines were also calculated and ranked with the 
best five from the single-level subset, using the overall, total statistic, as well as the comparisons made from the 
two-level, BFNR-constrained, and final segmentations observed in Table 4.  The number of non-matched crown 
features from the test set of 83 in the final routine ranked second among all 55 test segmentations with three.  T-test 
and SLR probabilities both displayed significance (α = 0.05) with a poor R2 value (0.0043). 
 
Field Remotely Sensed Tree Densities 

Tree density comparisons were performed at the plot-level using the number of dominant/codominant trees 
sampled in the field compared to the number of canopy objects from the various quantitatively compared 
segmentations using paired differences’ Root Mean Squared (RMS) and arithmetic mean averages.  Density 
comparisons were not used as decision criteria.  Assuming the segmentation level that matched tree crowns best also 
yielded the best density measures, tree densities served as a performance meter for how well eCognition identified 
individual tree crown extents and numbers. 

In calculating and ranking, among all 55 routines, the mean and RMS values, no agreement was found between 
the crown identification stage and this step because none of the 16 trials examined in the final portion of that stage 
ranked better than 20 in mean and RMS comparisons.  Overall the RMS values ranged from 1.56 to 4.06 with a 
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Table 4. Parametric and descriptive crown radii comparisons among the best single layer subset 
segmentation routines (first five layers), the two-level subset routines (second five layers), the single-
level BFNR constrained subset routines (third five layers), and the final two-level non-subset 
segmentation (the last layer). 

 
t-test Analyses SLR Analyses2 

Layer 
Mis- 

matches Rank1 Obs. Sig. Rank1 β0 β1 Obs. Sig.  R2 Rank1

L1_5971 5 9 < 0.0001 52 3.5722 0.2725 0.0005 0.1488 2 
L5_5756 8 33 < 0.0001 30 3.4804 0.2850 0.0031 0.1135 4 
L7_5772 9 37 0.0006 4 4.4005 0.1863 0.0821 0.0414 28 
L7_5870 4 3 < 0.0001 27 5.5893 0.0276 0.7343 0.0015 51 
L9_5545 6 16 < 0.0001 28 3.8703 0.2514 0.0085 0.0888 9 
L1_26_3871 7 24 < 0.0001 17 3.8857 0.2382 0.0120 0.0823 11 
L5_24_3556 4 3 < 0.0001 38 4.2461 0.1907 0.0092 0.0848 10 
L7_26_3770 12 53 0.0004 5 4.5459 0.1466 0.1130 0.0360 29 
L7_26_3872 4 3 < 0.0001 37 5.2373 0.0720 0.4376 0.0078 44 
L9_26_3445 2 1 < 0.0001 44 5.2058 0.0710 0.4323 0.0078 45 
L1_4071 4 3 < 0.0001 55 3.6651 0.2654 0.0028 0.1106 5 
L5_4156 11 50 < 0.0001 54 5.0092 0.0920 0.2068 0.0227 40 
L7_3672 7 24 < 0.0001 50 4.0069 0.2319 0.0183 0.0729 14 
L7_3970 7 24 < 0.0001 48 4.9746 0.1027 0.1513 0.0276 35 
L9_3545 12 53 < 0.0001 53 4.3556 0.1734 0.0425 0.0583 17 
L9_26_4445 3 2 0.0014 2 5.3747 0.0682 0.5586 0.0043 48 
1 Rankings compared to all 55 quantitatively tested segmentation routines 
2 Using the model Rfield = β0 + β1(Robject) 

*Layer names indicate the layer and its weight used, scale parameter(s), as well as color and smoothness weights, 
respectively (i.e., L9_26_4445 used the CHS (or “L” for LiDAR) weighted nine times greater than the MS data with 
a first-level scale of 26, a second-level scale of 44, a color weight of 0.4 and a smoothness weight of 0.5). 
 
mean of 2.41 and a median of 2.31 while the arithmetic mean values ranged from 0.33 to 3.11 with a mean of 1.29 
and a median of 1.16.  This analysis also indicated that the final segmentation did not yield the best RMS value, 
which was preferred because it does not having a canceling effect like an arithmetic average.  In fact the final, non-
subset segmentation yielded a ranking of 51 out of 55. 
 
Tree Species Classification 

Image classification in this study intended to classify individual objects derived from the three segmentation 
routines of interest into one of seven species classes.  These species were baldcypress (BAC), loblolly pine (LOP), 
cherrybark oak (CBO), overcup oak (OVO), mockernut hickory (MOH), water oak (WAO), and willow oak  (WIO) 
with the “Non-forest” class being extracted on the basis of object majority to the non-forest portion of the BFNR 
thematic layer.  After classifying the final segmentation routine, 131 test samples were selected for accuracy 
assessment and yielding an overall accuracy of 40.46% and a KHAT statistic of 29.19%, with an individual species 
breakdown given in Table 5. 
 
 

DISCUSSION AND CONCLUSIONS 
 

The results from the LiDAR and field height comparisons demonstrated paired data sources whose differences 
were significant (α = 0.05), but were modeled (SLR) with good fit and coefficients that were significant.  The 
plotted data, however, showed the presence of four possible outliers (the two lowest and highest points in Figure 2).  
After refitting the SLR model the coefficients from the “with” and “without outliers” datasets changed as the 
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intercept decreased from 9.0942 to 7.6898, the slope increased from 0.7142 to 0.7543, and the R2 value increased 
from 0.5296 to 0.6231. 

 
Table 5. Final multi-level classified segmentation routine error matrix and accuracy assessment results at the 

species-level for the entire Noxubee NWR study area. 
 
  Reference data1 
  BAC LOP CBO OVO MOH WAO WIO Sum 

BAC  4 2 1 2 0 0 0 9 
LOP  1 8 0 0 0 0 0 9 
CBO  0 1 8 1 3 7 1 21 
OVO  7 0 7 19 0 2 6 41 
MOH  1 6 0 0 5 3 1 16 
WAO  0 2 1 0 1 1 0 5 
WIO  0 1 9 6 3 2 8 29 C

la
ss

ifi
ed

 d
at

a1  

Non-forest 1 0 0 0 0 0 0 1 
 Sum  14 20 26 28 12 15 16 131 

 Accuracies 
 Producer 0.4444 0.8889 0.3810 0.4634 0.3125 0.2000 0.2759  
 User 0.2857 0.4000 0.3077 0.6786 0.4167 0.0667 0.5000  
 Overall 0.4046        
 KHAT 0.2919        
1 BAC = Baldcypress, LOP = Loblolly pine, CBO = Cherrybark oak, OVO = Overcup oak, MOH = Mockernut 
hickory, WAO = Water oak, and WIO = Willow oak. 
 

In similar studies, both Brandtberg et al. (2003) and Hyyppa and Inkinen (1999) noted uncertainties with regard 
to field height collection.  Brandtberg and others noted, as in this project, an overestimation of shorter trees and an 
underestimation of taller trees using LiDAR height (compared to field height).  This similarity was such that the 
SLR intercept (10.623), slope (0.6115), and R2 (0.69) values were close to the ones derived in this study.  This 
problem was probably the result of difficulties in identifying crown peaks, which is presumably due to the nearly flat 
surfaces of hardwood crowns as well as the uncertainties in viewing these crowns through multiple lower story 
canopy layers, which are present under most dominant hardwood canopies in the South.  Even with these 
acknowledged limitations and discrepancies, the results of this testing were encouraging. 

Although a multitude of crown-to-object size testing values were possible, six non-parametric (descriptive) and 
two parametric (inferential) tests were used to examine area and radii of paired crown and segments.  These eight 
procedures were chosen to ensure confidence that an accurately predictive segmentation, if one existed, would be 
identified for generation of final results.  The ideal segmentation, however, was never determined because none 
examined appeared to accurately identify field-measured tree crowns.  A final segmentation was selected from the 
subset trials in order to perform species classification and to determine if overall crown size and tree density 
determination would improve when segmentation occurred over the entire study area.   

The value selected for determining the optimal segmentation routine was the overall, total, non-parametric 
assessment value.  This value was selected because it incorporated all field-measured tree crowns designated for 
testing, whether they matched a segmentation object or not.  These values also allowed for direct influence of 
individual tree crowns based on matched field-measured and object feature sizes, giving more power to the larger 
tree crowns, which would be appropriate in most timber volume inventory analyses as larger crowned trees typically 
contribute more volume than smaller trees.   

The final segmentation routine used a layer weight of 0.9 in favor of the CHS (0.1 to the GeoVantage or MS 
dataset), a scale of 26 in the first-level and 44 in the second-level, a color weight of 0.4 (shape weight = 0.6), and a 
smoothness weight of 0.5 (compactness weight = 0.5).  The resulting overall, total test value of 0.3211 was deemed 
the best in this study (Table 3).  In fact, parametric and non-parametric statistics for all 55 quantitatively compared 
segmentations displayed low non-parametric proportions, significant differences, and poor R2 values.  For this 
reason, the eCognition procedure for extracting image objects that optimally represented individual tree crowns was 
found to be inadequate. 
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The reason for this inability to delineate individual tree crowns is related to the “within crown” as opposed to 
the “between crown” vertical variance structure.  This situation was attributed to the intermingled nature of 
hardwood tree crowns in high-density areas.  When visually compared, this trend was observed in segmented areas 
where lower and higher crown density areas yielded different results (Figure 3).  In these areas, trees located in low 
density areas, allowing lower height values in regions between individual tree crowns, were at times differentiated 

well.  In contrast, trees located in high density areas, where multiple tree crowns appeared continuous in the CHS, 
were rarely distinguishable in the various segmentation results.  With this limitation noted, improper crown 
delineation using eCognition should decrease in stands where density is lower and individual crown forms become 
better defined.  
 

Figure 3. Segmentation results (yellow outline) using the CHS layer (grayscale) weighted completely with field-
measured crown extents overlayed (red) in high (left) and low (right) density crown areas. 

 
Since crown size fitting served as the training phase of the segmentation process with tree counts serving 

entirely as a secondary test phase, tree count accuracy was judged, in addition to its independent accuracy, on the 
basis of whether or not optimal counts were achieved at the optimal crown size comparison routines.  For this 
reason, plot-level tree counts were determined infeasible because of the misalignment between optimizing tree count 
and crown size routines. 

The inadequacies of this object-oriented approach in deriving tree counts, or density measures, were consistent 
with the crown size limitations mentioned previously.  With the entire optimization process for tree density 
extraction dependent on optimal crown size analyses, it stands to reason that the problems encountered in crown size 
trials were the major inhibitions in creating representative plot-level density values. 

While the two softwoods, BAC and LOP, demonstrated good separability across the three classifications, the 
hardwoods, particularly WAO, appeared less separable.  For this reason, species were joined to represent the 
baldcypress (BAC), southern yellow pine (LOP), red oak (CBO, WAO, and WIO), white oak (OVO), and hickory 
(MOH) merchantable classes.  This combining of classes yielded improved overall accuracy (55.73%) and KHAT 
values (38.63%).  

In order to determine the performance of this classification, a comparison of these results to two pixel-based 
classification studies performed in close proximity to this project’s study area was made.  These studies yielded 
overall accuracies of 65% (Casey, 1999) and 76% (Batten and Evans, 1998) across four species groups (hickory, 
oak, pine, and sweetgum).  In reassessing the results from this project’s classification with four classes so that they 
may be compared to these studies, hickory (MOH), oak (Oak), Southern yellow pine (LOP), and baldcypress (BAC) 
groups were identified.  The overall accuracy from this analysis was 72.52%, surpassing the results achieved in one 
of these previous studies, and approaching the value achieved in the other. 
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As a whole, this study performed as expected with regard to the height and species classification portions.  
While the crown identification stage was preliminarily deemed problematic, it was surprising as to its actual level of 
difficulty.  In any event, some obstacles that were encountered in this project were successfully mitigated, lending 
merit to this work as a benefit to the user and academic community.  Continued work is stressed.  If a piecewise 
research effort can be contributed from multiple sources, perhaps the problems addressed in this work may be 
overcome resulting in the practical application of these technologies in the natural resource management 
community. 
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